Maximizing Determinism in Stream Processing Under Latency
Constraints

Nikos Zacheilas, Vana Kalogeraki
Department of Informatics
Athens University of Economics and Business
Athens, Greece
zacheilas,vana@aueb.gr

ABSTRACT

The problem of coping with the demands of determinism and meet-
ing latency constraints is challenging in distributed data stream
processing systems that have to process high volume data streams
that arrive from different unsynchronized input sources. In order
to deterministically process the streaming data, they need mech-
anisms that synchronize the order in which tuples are processed
by the operators. On the other hand, achieving real-time response
in such a system requires careful tradeoff between determinism
and low latency performance. We build on a recently proposed
approach to handle data exchange and synchronization in stream
processing, namely ScaleGate, which comes with guarantees for
determinism and an efficient lock-free implementation, enabling
high scalability. Considering the challenge and trade-offs implied
by real-time constraints, we propose a system which comprises
(a) a novel data structure called Slack-ScaleGate (SSG), along with
its algorithmic implementation; SSG enables us to guarantee the
deterministic processing of tuples as long as they are able to meet
their latency constraints, and (b) a method to dynamically tune the
maximum amount of time that a tuple can wait in the SSG data-
structure, relaxing the determinism guarantees when needed, in
order to satisfy the latency constraints. Our detailed experimental
evaluation using a traffic monitoring application deployed in the
city of Dublin, illustrates the working and benefits of our approach.

CCS CONCEPTS

« Information systems — Stream management;

KEYWORDS

Complex Event Processing, Stream Processing, Deterministic Pro-
cessing

1 INTRODUCTION

Distributed stream processing systems (DSPS) such as Apache’s
Storm [3] and Spark Streaming [2] provide state-of-the-art systems
for processing potentially unbounded sequences of tuples with low
latency and high velocity. Continuous processing of large volumes

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

DEBS ’17, Barcelona, Spain

© 2017 ACM. 978-1-4503-5065-5/17/06...$15.00

DOI: 10.1145/3093742.3093921

112

Yiannis Nikolakopoulos, Vincenzo Gulisano,

Marina Papatriantafilou, Philippas Tsigas
Chalmers University of Technology
Gothenburg, Sweden
ioaniko,vinmas,ptrianta,philippas.tsigas@chalmers.se

of data streams presents an important challenge in a wide range of
big data application domains ranging from traffic monitoring [24]
to financial data processing [6]. These systems invoke continuous
queries in which incoming tuples are processed in sliding windows
and executed on multiple computing nodes, in order to detect events
of interest in real-time.

The problem of providing deterministic operation for stream
processing applications has been studied recently. A stream op-
erator’s implementation is considered deterministic, if, given the
same sequences of input tuples, the same sequence of output tuples
will be produced, independently of the tuples’ inter-arrival time.
In [8] the ScaleGate data structure guarantees that data arriving
from different input streaming sources are processed in the correct
order by the join operator, while it has also been used for scalable
streaming aggregates [5] and analytics [9]. ScaleGate stalls the pro-
cessing of each tuple until it is certain that no other tuple with
smaller timestamp will arrive. A similar buffer-based technique has
been proposed in [16] where they exploit the use of the K-slack
data structure for keeping incoming tuples, and process them only
when K time units have elapsed since the tuple has been inserted
in the data structure.

Existing approaches have two important limitations: First, both
ScaleGate and K-slack focus on the performance of a single operator
and do not examine the problem in the context of complex graphs
where the application consists of multiple operators. A second im-
portant aspect that has not been considered by these techniques is
that there are often real-time response requirements to be satisfied
which conflict with the fact that deterministic operation requires
that tuples are stalled often for large amounts of time until they are
ready for processing. Many applications, such as traffic and environ-
ment monitoring applications have low response time requirements
and can tolerate approximate results [12]. For example, in a traffic
monitoring application the users want to know the current traffic
conditions as fast as possible and can tolerate some inaccuracy in
the results (i.e., missing some traffic updates). Nevertheless, it is
still desirable to minimize the amount of missed events.

A few recent works [12, 13] have been proposed that aim at
providing determinism guarantees and meeting application’s end-
to-end response time requirements. However, they are operator
specific (i.e., in [12] they focus on join operators while in [13] they
examine the problem for aggregate operators) and do not provide
a generic approach which would work with any operator type
and complex application graphs. Furthermore, in [11] the authors
examine the problem of placing K-slack buffers in an application
graph comprising count and join operators in order to share tuples
between them and minimize the memory usage. However, they do

DEBS 17, June 19-23, 2017, Barcelona, Spain

250000 Bus Sensors === | 25000 Queueing Threshold=1000 ===~
—_ Queueing Threshold=5000 —
E 200000 SCATS Sensors 20000 - Queueing Threshold=10000 -
g. g Queueing Threshold=20000
S 150000 15000 f i
7] >
[}
€ 100000
[
o
S 50000
=] G
(= ’.’
06 30 50 200 100

100 _ 15
Time (sec) Time (sec)

Figure 2: Queueing Thresh-
old’s impact on the join oper-
ator’s latency.

Figure 1: Reported times-
tamps from the two sources.

not consider the end-to-end response time requirements and are
limited to two operator types (i.e., join and aggregate).

In this work we study the problem of maximizing the deter-
ministic operation for distributed stream processing applications
under latency constraints. We consider applications with real-time
response requirements (i.e., traffic monitoring systems, financial
applications). We define as latency the end-to-end execution time
(including queueing delays) of tuples that are processed by a stream
processing application graph comprising multiple stream process-
ing operators. The problem is challenging as we have to minimize
the impact of out-of-order tuples on the accuracy of the operators’
results, and also satisfy the application’s response time require-
ments. To satisfy these requirements we have to bound the amount
of time (i.e., provide an upper queueing threshold) that a tuple can
be stalled for guaranteeing deterministic processing. When a tuple
has resided on the operator’s input buffer more than this thresh-
old then it is read and processed by the operator. Using a small
queueing threshold improves the latency as tuples will be stalled
for a short time period. However, this can lead to processing many
tuples that violate the determinism constraints.

In Figures 1, 2, 3 and 4 we illustrate with an example how com-
munication delays can affect the latency of a join operator and their
effect on determinism in terms of our ability to accurately detect
events. This example is from a traffic monitoring system deployed
in the Dublin Smart City [24] where the City Operator performs
a join operation (in a 5 second sliding window) on streaming data
from two separate input traffic data sources, Bus trajectory data
from buses moving around the city and SCATS measurements of
traffic flow in junctions, to detect areas of high traffic congestion
across the city. Figure 1 shows the timestamps of the tuples of the
two input sources over time where we observe that the Bus input
source exhibits periods of higher communication delay (e.g., in the
first 25 seconds the bus data tuples arrive with a delay of 7 seconds).
This increased delay can lead to out-of-order tuples unless we stall
incoming tuples on the operator’s input buffer using the queue-
ing threshold parameter. In Figure 2 we depict how the amount
of time that tuples will wait in the operator’s buffer before they
are processed (i.e., in order to guarantee determinism), can affect
the operator’s response time (i.e., latency). During periods of high
delay, a large queueing threshold can lead to an increase on the
operator’s latency. In contrast, when we utilize a small queuing
threshold (i.e., 1,000 ms) the latency is kept steady.

However, this can affect the total amount of detected events (i.e.,
Figure 3) and the number of out-of-order tuples (i.e., Figure 4). More
specifically, when we use small thresholds the operator will not

113

10000 Ground Truth — 2500 Queueing Threshold=1000 ===~
“ 9 Queueing Threshold=5000 —
£ 8000 : 3 2000 | Queueing Threshold=10000 - - -
3 2 Queueing Threshold=20000 -
w 6000 o 1500 + +
3 °
- o
8 4000 5 1000
] <
& 2000 g 500

%9 5000 0 160”150 500
Time (sec)

N. Zacheilas et al.

. 10000 15000 20000
Queueina Threshold (ms)

Figure 4: Queueing Thresh-
old’s impact on out-of-order
tuples.

Figure 3: Queueing Thresh-
old’s impact on the number
of detected events.

read tuples in their correct timestamp-order and therefore it may
incorrectly shift its 5 seconds sliding window. Due to the shifting of
the sliding widow some comparisons between the tuples of the two
input sources will not be performed and thus fewer events will be
detected. In Figure 4, we illustrate the number of out-of-order tuples
of the corresponding time periods presented in Figure 2 when we
use different queueing thresholds. It can be observed that in periods
of high delay the number of out-of-order tuples increases when
small queueing thresholds are used.

In this work we propose a novel system that enables deterministic
stream processing under latency constraints by examining the trade-
off between the application’s deterministic operation and its real-
time response requirements. We propose a novel data structure,
called Slack-ScaleGate (SSG), which exploits the notion of slack-
ready tuples and enables us to bound the maximum amount of
time that a tuple will be stalled to meet its latency constraint. We
pro-actively adjust the SSG’s slack threshold parameter to satisfy
latency constraints and at the same time to minimize the amount of
slack-ready tuples that are read from SSG. To address the effects of
the relaxation of the determinism, we handle late-arrivals that may
occur in order to maximize the operator’s deterministic operation.
The main contributions of this work are the following:

o We define the notion of slack-ready tuples in order to cap-
ture the maximum acceptable latency to satisfy the user’s
response time requirements. We exploit this definition in
our data structure, called SSG, which allows us to (a) maxi-
mize deterministic processing while (b) meeting real-time
latency criteria. We analyze the determinism properties of
SSG with respect to the input streams and their effect on
the object’s execution, and show that SSG can transition
back to determinism even after the latter has been relaxed.
We formulate the problem of maximizing the deterministic
stream processing under latency constraints as a single-
objective optimization problem that targets at minimiz-
ing the amount of slack-ready tuples that are read due to
latency-related performance goals.

We provide a novel system which exploits the SSG data
structure to guarantee the deterministic stream process-
ing of incoming tuples and also automatically tunes the
slack threshold parameters to solve the aforementioned
optimization problem. Our approach: (i) applies Gaussian
Processes to capture the impact of the slack threshold pa-
rameter on the application’s latency and the amount of
slack-ready tuples that will be read, and (ii) adjusts the
time-window parameters using a greedy algorithm that

Maximizing Determinism in Stream Processing Under Latency Constraints

Latency
1

latency,, latency,,,

L L
PThreads,, V' [pThreads,,

&

Input Sources
L

merged
stream

merged

stream

Operators

Figure 5: Application graph in our system.

enables us to avoid deadline violations and to minimize
the amount of slack-ready tuples that will be processed.

e Finally, we provide an extended experimental evaluation
which demonstrates the benefits of our approach using a
real-world traffic monitoring application. Our experimental
results illustrate that our approach is practical, exhibits
good performance, and effectively manages to relax the
determinism guarantees only when it is truly necessary to
meet the application’s real-time performance criteria.

2 PRELIMINARIES

In this section, we describe our stream model and provide the
necessary determinism definitions.

2.1 Stream Basics

A data stream S; is an unbounded sequence of tuples tl] where
i represents the arrival order of the tuple within the S; stream.
Each tuple has a timestamp, denoted by tl] .ts which indicates the
time that the tuple was generated at the data source. A tuple t;c
is characterized as a late-arrival or an out-of-order tuple! if there
exists another tuple, tl’ in Sj such that i < k and t;.ts > t;c.ts.

An application running in a stream processing system is typically
represented as a graph where nodes correspond to processing oper-
ators (such as joins or top-k operators) and edges denote the com-
munication among the operators. Let Operators denote the set of
operators that comprise the application graph. Each op € Operators
is implemented using multiple threads, PThreadsoyp, that concur-
rently process the streaming data as can be observed in Figure 5. An
operator can be either stateless or stateful [7]. The main difference
of the two operator types is that stateful operators process and
keep the incoming data in memory buffers for a fixed amount of
time, while stateless operators only process the tuples. We define
as SWp, the time the information carried by a certain tuple resides
on the operator’s buffer. If the operator is stateless this metric will
be equal to zero as no tuple needs to be kept.

An operator can receive tuples from multiple input streams. As
we illustrate in Figure 5, tuples arriving from different input streams
are merged into a new stream before they can be read and processed
by the operator. We assume that the input streams deliver tuples
with increased timestamps (i.e., each individual data stream does not
produce out-of-order tuples). We argue that this assumption holds
true in many use cases and more specifically in traffic monitoring

!in our model the terms late-arrival and out-of-order tuple denote the same notion so

we use them interchangeably

114

DEBS 17, June 19-23, 2017, Barcelona, Spain

applications like the ones we study in our experimental evaluation
(see Section 6) where data are reported by sensors at fixed time
intervals. In such applications it is not possible to have out-of-order
tuples in the input sources as the sensors produce ordered reports
(e.g., a bus sensor cannot produce a report for 10 : 30 pm and then
generate a report for 10 : 15 pm). However, despite the fact that
sources deliver tuples with the correct sequence, there is no guaran-
tee that tuples will be inserted in the correct timestamp-order on the
operator’s merged stream due to communication or processing de-
lays which occur in the arrival of the tuples from the input streams.
Therefore the operator will receive and process late-arrivals from
the merged-stream unless a mechanism that orchestrates the tuples
processing order is provided.

2.2 Determinism and ready tuples

A stream operator is considered deterministic, if, given the same
sequences of input tuples, the same sequence of output tuples will
be produced, independently of the streams’ inter-arrival times and
processing order. It is very important to guarantee the deterministic
processing of input tuples for applications like click stream analysis
and traffic monitoring due to the fact that non-determinism can
cause money loss or missed events. Deterministic stream processing
is achieved by merging the timestamp-sorted tuples coming from
different streams and feeding the operator with a timestamp-sorted
stream of ready [8] tuples.

Definition 2.1. Ready Tuple. Let t{ be the i-th tuple from timestamp-
sorted stream S;. t{ is ready to be processed if t‘;.ts < merge;s,
where merge;s = mink{t;‘.ts} is the minimum timestamp among
the timestamps in the set of tuples comprising the latest received
tuples tlk from each timestamp-sorted stream Sy.

To guarantee that only ready tuples will be read by the operators,
one approach is to use dedicated operators to merge incoming tuples
from multiple sources such as Input Mergers [7] and SUnions [4].
ScaleGate [8] is a recently proposed data structure that adopts a
different approach, without requiring the use of extra operators.
ScaleGate® encapsulates the necessary communication between
the input sources and operator’s processing threads in order to
decide whether a tuple is ready or not. ScaleGate’s algorithmic
implementation is based on a lock-free implementation of the skip
list [21] data structure, to maintain a timestamp-sorted multi-level
linked list of the input tuples and enable concurrent insertions with
probabilistically logarithmic overhead, together with a novel flag
mechanism to efficiently detect ready tuples.

3 MODELING OF THE PROBLEM

In this section we model the problem of maximizing the determin-
ism under latency constraints.

In order to guarantee the deterministic processing of tuples, op-
erators must read only ready tuples. However, this requires stalling
arriving tuples until their timestamp is less than the merge times-
tamp. The amount of time that a tuple should wait before it is
considered ready depends on the rate with which tuples arrive in
the system. So if the input source experiences delays (e.g., due to

Zhttps://github.com/dcs-chalmers/ScaleGate_Java

DEBS 17, June 19-23, 2017, Barcelona, Spain

network communication) this will lead to an increase of the time
required to read a ready tuple as the merge timestamp is updated
only when we have received input from all the input sources (in-
cluding the one experiencing the delays). This stall of tuples for
satisfying the ready condition can be seen as an extra queuing delay
that affects the operator’s execution time (i.e., latency) and thus the
execution time of the entire stream processing application.

In this work we provide a model that considers the impact of
these queuing delays on the application’s end-to-end execution
time. Assume a distributed stream processing application repre-
sented as a processing graph whose nodes correspond to processing
Operators (such as join or aggregate operators) and edges denote
the communication among the operators (i.e., see Section 2.1). Let
latencyop, Yop € Operators denote the time required by an opera-
tor to read and process an incoming tuple, computed as follows:

latencyop = MAaXthrePThreadsop {queue_delaythr, op
+proc_timespr op) Yop € Operators @

where the operator’s latency is a function of the time required to pro-
cess the tuple by one of the operator’s processing threads (expressed
via the proc_time,, 1, metric) and the corresponding queueing
delay queue_delay;p, ,p at the thread’s thr queue. Threads may
process tuples with different speeds so the latency of the opera-
tor depends on the execution time of the slowest running thread.
Deterministic processing indicates higher queue_delay;p,, o, and
thus higher latency,y as tuples would need to be stalled until they

become ready to be processed. Let comm,,__ depict the commu-

nication time between operator op and its downstream operator op/.
We can then compute the end-to-end Latency of the application
graph via the following Equation:

2

opeOperators

)
@

where maxy,q;p, is used in the case that the application is repre-
sented as a graph with more than one paths, so that the end-to-end
execution time of the application is the maximum path latency.
Application users can use the Deadline constraint to impose a con-
straint on the time it should take for data tuples to be processed
end-to-end. For example, in the traffic monitoring system we de-
scribed in Section 1, the City Operators expect that traffic events
(i.e., congestion, delays) should be detected within one minute (from
the time the data is generated at different input sources, a join op-
eration is performed and a final result is returned).

When the Latency value exceeds the Deadline constraint then a
deadline violation has occurred. Our goal in this work is to avoid
such violations so we have to satisfy the following constraint:

Latency < Deadline

Latency = maxparp (latencyop + comm

op->op’

(&)
To satisfy the application’s deadline requirements, it is necessary to
minimize the amount of time that tuples will be stalled until they
are considered ready, thus we relax Definition 2.1. More specifically,
the idea is to bound the maximum amount of time that a tuple
will wait before it is read by the operator’s processing threads.
Therefore, we propose the notion of slack-ready tuples:

Definition 3.1. Slack-Ready Tuple. Let t; be the i-th tuple from

timestamp-sorted stream S;. tl’ is slack-ready to be processed if

maxes — t;.ts > SLT, where max;s = maxk{tlk.ts} is the maximum

115

N. Zacheilas et al.

tl

RQ, RQ; RQ; RQ,
1 1 1 1
1 1 1 1
: : [: 1 | H S1
tlits=1 thts=5511t3ts=91 1 |
1 1 1 1
Imerge,; = 2merge,; = 2lmerge,; = 2 | merge,; = 4
:max,s =5.5 : max, =9 :maxm =9 | max,;=9
1
M ! ! e N
) ' ' T S2
1 1 1 1
tts=2 | | | Bts=4
1 1 1 1
T T T T
B Nu oy NULL
2 [I] I
Elwel O @@
k+ ! 1 1 1
< ! 1 1 1
Wopsz1 D 1 D | D 1
" 1 L 1 1
B0 ! 1] ! L '3 A
_________ 29 Wopsit |t 1 @ 1 |g =
! Notations 15 £ ! ! ! !
I ; 2@ Wops,' ! ! 1
. +:Addtupleinthe 1§ P52y | | | j
, 1
y operator’s buffer | Join Operator (SW,,;, = 4)
1 -t;\zeor:::t::";lz:;?: 1 processing only ready tuples
! 1 Fa— V3 T
1 X :Join two tuples | : i ty |
_________) + X
c 1 ! !
< | : |
1
Wops, | D 1 1
1 1
X | 1 B
1 1
1 1
1 1
1 1

2
t

Operator’s
Buffers

1
W"vaxl t}
1
Wopssy]
Join Operator (SW,,I, =4)

processing both ready and slack-ready tuples (SLT,,, = 3)

Figure 6: Example of slack-ready tuples’ impact on a join
operator that processes tuples from two input sources.

timestamp among the timestamps in the set of tuples comprising
the latest received tuples tlk from each timestamp-sorted stream Sy
and SLT € [0, max;s — merge;s] is the user-defined slack threshold
parameter that controls the time duration that a tuple can be stalled.

Our goal is to exploit the slack-ready tuples definition in our
system by adding the SLT,, parameter on each operator op €
Operators. Essentially, feeding an operator with slack-ready tu-
ples guarantees that there is a constraint on how much a tuple will
be stalled in order to minimize the probability that the application
deadline is violated. This approach relaxes the operator’s determin-
ism so if an operator reads and processes slack-ready tuples then a
tuple with lower timestamp arriving from a source that experiences
delays will be read and processed by the operator as an out-of-order
tuple. These out-of-order tuples will contribute on the operator’s
results as long as the sliding window they belong has not been
shifted due to the reading and processing of slack-ready tuples.

The SLT value is meaningful when it is bounded to max;s —
merge;s as this is the maximum difference that can occur between
any two tuples that are added by the input sources. When this
upper threshold (or a higher one) is used the slack-ready tuples
end up being equivalent to the ready tuples (i.e., max;s — tl’ ts >

max;s — mergers = mergers > t{.ts). We should clarify that Defi-
nitions 2.1 and 3.1 are not mutually exclusive. A tuple that is ready
can also be characterized as slack-ready if it is processed when the
difference of its timestamp with the maximum timestamp is greater
than SLT and at the same time its timestamp is smaller than the
merge timestamp. However, the ready definition provides stronger
determinism guarantees as all tuples will be read in the correct

Maximizing Determinism in Stream Processing Under Latency Constraints

timestamp-order, but at the expense of extra queueing delay as we
cannot control the amount of time that tuples will be stalled. We
elaborate with the following example on (a) how the SLT parameter
can bound the amount of time that a tuple will be stalled and (b)
how SLT may affect the accuracy of the operator’s results.

Example Description. In Figure 6 we illustrate a join operation
on two input sources (i.e., S; and Sz) and its read requests overtime
(i.e., RQs in Figure 6). Incoming tuples are kept in two sliding win-
dows (Wyp, s, and Wy, s, respectively) and the size of each sliding
window is 4 time units. In Figure 6 we display the operator’s actions
and the state of its sliding windows when the join operator reads:
(i) only ready tuples (i.e., diagram A in Figure 6) and (ii) both ready
and slack-ready tuples (i.e., diagram B in Figure 6).

Exploiting the notion of slack-ready tuples, relaxes the determin-
ism guarantees in order to meet the operator’s real-time criteria. In
Figure 6, diagram B, the operator reads the t21 tuple which is a slack-
ready tuple (i.e., max;s — 1‘2l =9-5.5=3.5> SLT,p) and it removes
tl1 from the W, s, sliding window as it exceeds the amount of time
that it should be kept. In the fourth read request the operator reads
t% which is a late-arrival and compares it only against tz1 and not
tll. However, t11 and t%, should be also compared as they are within
the 4 time units sliding window (i.e., tzz,ts - tl1 .ts = 3). These tuples
will never be compared due to the shift in the sliding window after
reading the t21 slack-ready tuple. Because we do not perform this
comparison we can miss an event that triggers the join predicate.
This illustrates that reading and processing slack-ready tuples pe-
nalizes the operator’s accuracy. In contrast, if the operator reads
only ready tuples, then tl1 and tz2 are compared but we impose extra
queuing delay to the tuples as we have to wait until tg arrives before
the operator is able to read a ready tuple from the merged-stream
which can violate the operator’s real-time requirements.

The number of slack-ready tuples, slrTuples,p, that have been
read by the operator’s processing threads provide an insight of how
much the operator’s determinism guarantees have been relaxed.
More formally, assuming that we have an indication (e.g., a Boolean
variable) whether a tuple has been read by a thread as slack-ready,
we can compute slrTuplesy, via the following Formula:

slrTuplesop = sltinr,op, Yop € Operators
threPThreadsop

@

where slr;p;, p is the number of slack-ready tuples that have been
read by processing thread thr € PThreads,p. The number of slack-
ready tuples read by a thread depend on the SLT,, parameter as it
controls when a tuple should be read as slack-ready (i.e., see Defini-
tion 3.1). Based on the amount of slrTuples,p read per operator we
can compute the number of slack-ready tuples read by the whole
application graph via the following Equation:

2

opeOperators

SLRTuples = slrTuplesop

®)
This value should be kept as low as possible to avoid missing events
of interest and to guarantee the determinism of the processing.
A large SLTyp can minimize SLRTuples but this can increase the
application’s Latency and cause deadline violations. So there is a
trade-off between SLRTuples and Latency that needs to be consid-
ered when we tune SLT,, Yop € Operators. Our goal in this work
is to study the trade-off between these two metrics by minimizing

116

DEBS 17, June 19-23, 2017, Barcelona, Spain

Equation 5 and at the same time satisfying the end-to-end execu-
tion time requirements of the user expressed via Equation 3. More
formally, the problem can be defined as follows:

Problem Definition. Given a stream processing application graph
comprising a set of Operators, determine SLT,p, Yop € Operators
such that:

minimize SLRTuples = slrTuplesop
opeOperators

subject to: Latency < Deadline

4 SOLUTION OUTLINE

In this section we provide an outline of our proposed solution for
maximizing the determinism under latency constraints. Our objec-
tive is to provide a system that meets the following requirements:

o The Latency demands of the distributed stream processing
application expressed in terms of a user-specified dead-
line, are met, given that the scheduling of the operator’s
processing threads is not adversarial.

e The operators’ processing threads will read and process
only ready tuples as long as the stalling of tuples for guar-
anteeing the ready condition (cf. Definition 2.1) does not
lead to violations of the deadline constraint.

e When the extra queuing delay for guaranteeing the tu-
ples’ deterministic processing leads to the violation of the
deadline constraint, then the system will sacrifice its de-
terminism guarantees in order to satisfy this constraint.
In such cases we process the merged-stream’s out-of-order
tuples as they may contribute to the output results.

To meet the above requirements our approach makes the follow-
ing contributions:

e We propose a novel data structure, called SSG, which ex-
ploits the notion of slack-ready tuples and enables us to
relax the determinism guarantees in order to satisfy re-
sponse time requirements while handling late-arrivals and
ensuring no duplicate tuples.

e We propose a methodology and have developed system
components to dynamically and proactively tune the SLT
parameters of the SSG data structures in order to guarantee
that the Latency constraint is always satisfied and the num-
ber of tuples that do not satisfy the strong determinism
guarantees (cf. Definition 2.1) is minimized.

In the following sections we first describe the SSG API and then
provide a short description of our system components.

4.1 SSG API

A basic building block in our approach is a new API that merges
the operator’s input streams and enables the operator’s processing
threads to read and process slack-ready tuples. We propose a novel
data structure, SSG that has the following properties: (1) returns
a tuple as slack-ready when it has been stalled for more than the
SLT threshold (cf. Definition 3.1), (2) handles late-arrivals that may
occur due to the determinism relaxation imposed by the slack-
ready notion, (3) no duplicate tuples are returned to each operator’s
processing thread and (4) enables the dynamic tuning of the SLT
parameter so that we can adjust it at real-time based on the current

DEBS 17, June 19-23, 2017, Barcelona, Spain

SSGOperator PThreads

SLTSetter

\

(2)

4]
Estimator'i—-l Trigger IL-lomimization

SLTuner

Monitor
Reports

Writers

e

A

N. Zacheilas et al.

1

1

1 late- 1. late-
arrivals |
1
1
1
1

arrivals

Priority
Queues

getSSGTuple

3.slack-ready | 2. ready

ScaleGate

[p—

Figure 7: (a) System components and (b) SSG implementation details.

system conditions. To satisfy these properties, SSG supports the
following API:

o getSSGTuple(readerld): returns to the calling reader en-
tity readerld (e.g., an operator’s processing thread) the
next earliest ready or slack-ready tuple® that has not been
yet consumed by the former. Each tuple is guaranteed to
be returned at most once to each readerld.
insertSSGTuple(tuple, writerId): inserts into SSG a tuple
from the writer entity writerld.
setSLT (sltParameter): sets the SLT parameter of SSG that
controls the amount of time that a tuple can be stalled in
the data structure.

There are two entities that can utilize SSG’s API, readers and writ-
ers. The latter are responsible to insert tuples in SSG while readers
retrieve tuples from the data structure. Writers in our system corre-
spond to the input sources (e.g., the bus and SCATS input streams in
the application example in Section 1) or upstream operators, while
readers are the operator’s processing threads.

The setSLT method can be used for tuning the SLT parameter,
as SLT enables us to control the amount of time that a tuple can
be stalled in the data structure. We should emphasize here, that,
for a fixed SLT value, the determinism level depends on the actual
execution and the difference max;s — merge;s that occurs while the
tuples arrive into the system, i.e. the difference between the most
recent tuples of the fastest and slowest streams respectively.

The effects of the relaxation of the determinism guarantees due
to the use of the SLT parameter on the getSSGTuple method are
twofold: i) out-of-order tuples on the merged stream: ideally, getSSG-
Tuple returns to each readerId ready tuples in timestamp order. Un-
der certain conditions, i.e. executions where max;s—merge;s > SLT
occurs, tuples that have exceeded the SLT threshold are returned,
possibly out-of-timestamp order. E.g., assuming that we have two
input streams and one of the two streams is delyed in generating
tuples for longer than SLT, slack-ready tuples from the non-delayed
stream are returned, and tuples from the delayed stream may be
returned later, ii) missing tuples: There is no guarantee that all the
returned tuples will be used by the readerId because e.g., as we
mentioned in Section 3 when we process slack-ready tuples we
may move incorrectly the operator’s sliding window and thus some
late-arrivals will not contribute to the operator’s results.

3We use the terms read a tuple and return a tuple interchangeably.

117

The insertSSGTuple method aims at guaranteeing that tuples
will be available for reading/processing by all the reader entities.
Even when a reader has started reading slack-ready tuples, our goal
is to provide an insert method that will be able to provide tuples
from a delayed stream to the reader, as we argue that these tuples
may contribute on the operator’s results.

4.2 System Components Overview

Users in our system (i.e., shown in Figure 7) define SSGOperators
components (i.e., stream processing operators that exploit the use
of the SSG data structure) only for those operators that have deter-
minism and real-time requirements. In addition, our system has an
external component called SLTuner for tuning the SLT parameters
used by the operators’ SSG. This is an inherently distributed system
where operators can be assigned to different computing nodes.
Each SSGOperator uses: (a) a single SSG data structure for keep-
ing its incoming data, (b) PThreads that read and process data from
the SSG and are a multi-threaded implementation of the stream
processing operator (e.g., joins or aggregations), (c) a special mon-
itor thread (i.e., MThread in Figure 7) for gathering performance
statistics such as the slack threshold used by the SSG and the oper-
ator’s latency and (d) a SLT Setter thread which is used to adjust
the SSG’s SLT parameter. The processing threads are responsible to
forward generated tuples to the downstream operators’ SSGs. In or-
der to tune the SLT parameters of the SSGOperators, the SLTuner
exploits the three components we illustrate in Figure 7 as follows:
o The Estimator component estimates the latency,p and slr-
Tuplesop,Yop € Operators in upcoming time periods. This
component uses the previous reports for building two pre-
diction models for each SSGOperator.
The Trigger component utilizes the outcomes of the Es-
timator to determine if the deadline is violated or if the
expected latency is significantly smaller than the deadline.
The latter condition is used for increasing the SSG’s thresh-
old value when we expect low per tuple latency in the
upcoming time periods. If one of the two conditions is true
then the Optimization component is invoked.
The Optimization component uses a greedy search algo-
rithm for solving the optimization problem we defined
in Section 3 and informs the SLT Setter threads about the
SLTs that the SSG data structures should utilize.

Maximizing Determinism in Stream Processing Under Latency Constraints

: PriorityQueuel] priorityQueues[#readerlds]

: AtomicLong SLT

: AtomicLong[] maxWriterTs[#writerlds]

: AtomicLong[][] lastReadTs[#readerlds][#writerlds]

: // A ScaleGate implementation as in [8] with access to the getHead(readerld)
//method that returns the last tuple read by each readerId

6: ScaleGate SG

Algorithm 1: SSG data structure: main variables

[SLEEU NS R

: nonOvertakenReaders « {}
: for readerld € lastReadTs do
It « max(lastReadTs[readerlId])
//Check if the reader has overtaken the writer.
if (It.ts > tuple.ts) then
priorityQueues[readerId].add(tuple)
else
nonOvertakenReaders.add(readerld)
9: //Add tuple to ScaleGate only if some reader has not overtaken this writer.
: if (lnonOvertakenReaders.isEmpty()) then
11: SG.addTuple(tuple, writerld)
: for all (readerld € nonOvertakenReaders) do

PN RPN

13: //Get reader’s maximum read timestamp.

14: maxTs « max(lastReadTs[readerld])

15: //Get reader’s last read tuple from writerId.

16: ltw « lastReadTs[readerld][writerld]

17: //Add tuple to priority queue only if the reader has overtaken the writer and it
//has not already read this tuple.

18: if (maxTs > tuple.ts && tuple.ts > Itw.ts) then

19: priorityQueues[readerId].add(tuple)

20: nonOuvertakenReaders.remove(readerld)

21: maxWriterTs[writerld] « tuple.ts
Algorithm 2: insertSSGTuple(tuple, writerId)

5 SYSTEM IMPLEMENTATION

In the following sections we describe in more details the imple-
mentation of the SSG data structure and the three components that
comprise the SLTuner.

5.1 SSG’s Algorithmic Implementation

In Figure 7 we illustrate the basic components of our proposed SSG
data structure and how it is utilized by the writers and readers.
More specifically, SSG uses (a) a ScaleGate object for keeping tuples
in timestamp-sorted order, (b) an array of priority queues (one
queue per readerId) for keeping late-arrivals that occur after SSG
returns slack-ready tuples, and (c) some additional synchronization
variables (see Alg. 1) for handshaking between writers and readers
with the help of timestamps of already written and read tuples.

Combining ScaleGate with Priority Queues. SSG should be able
to return both ready and slack-ready tuples. ScaleGate by default
enables the access only to the next ready tuple for each readerld,
which would not allow us to characterize a tuple as slack-ready.
Therefore, we modified the ScaleGate data structure and allow it to
also include a method to return the next tuple with timestamp larger
than the timestamp of readerId’s last read tuple, regardless if this
tuple is ready or not (i.e., getHead method in Figure 7). Furthermore,
when SSG returns slack-ready tuples, the determinism guarantees
are violated and late-arrivals can occur in the merged-stream; such
late-arrivals are stored in the priority queue of a reader that had
returned slack-ready tuples; this is needed since ScaleGate would
not be able to provide them to the readers, as the tuple returned
from the getHead method would have a timestamp larger than the
timestamp of the late-arrival.

118

DEBS 17, June 19-23, 2017, Barcelona, Spain

: //Check if reader’s priority queue has elements.
s if priorityQueuel[readerld].isEmpty() then
t « priorityQueue[readerId].poll()
lastReadTs[readerlId][t.writerld] « t.ts
//Characterize tuple as ready or slack-ready
mergeTs < min(maxWriterTs)
if t.ts < mergeTs then
t.isSlackReady < false
9: else
t.isSlackReady « true
11: return ¢
: //Get the next tuple that should be read by readerId and check (slack)-ready
//conditions
: t <« SG.getHead(readerld)
: if (t == NULL) then
return NULL
: mergeTs «— min(maxWriterTs)
: //Ready tuple condition.
: if t.ts < mergeTs then
t.isSlackReady « false
//Update lastReadTs appropriately
lastReadTs[readerld][t.writerld] « t.ts
return ¢
: maxTs « max(maxWriterTs)
: //Slack-ready tuple condition.
. if maxTs —t.ts > SLT then
t.isSlackReady « true
lastReadTs[readerld][t.writerld] « t.ts
return ¢
: return NULL
Algorithm 3: getSSGTuple(readerld)

AN A

Inserting tuples. Our implementation of the insertSSGTuple me-
thod (i.e., Alg. 2) handles late-arrivals and guarantees that each
tuple is returned at most once to each reader, i.e. without duplicates.
More specifically, first we check if some reader has read a tuple with
timestamp larger than the tuple we are about to insert. If so we add
the new tuple in the reader’s priority queue. Otherwise we add the
tuple in the main ScaleGate component. Nevertheless, due to the
asynchrony of the system, there is still a possibility for the reader
to overtake the writer before the insertion of the tuple is finished
and thus be missed. To limit the impact of such cases the insertion
mechanism checks again for the respective readers status (cf. lines
12 — 20 of Alg. 2). Alternatively, such tuples could be optimistically
added to the priority queues and burden the readers with checking
for duplicate tuples between the ScaleGate component and the
priority queues, thus guaranteeing that no tuples would be missed.
Our design choice is to keep the readers more lightweight, and
allow this behaviour while we tackle the non-determinism problem
in a higher level by regulating the SLT parameter.

The method introduces overhead of keeping extra information
for each reader, as we will have one priority queue for each reader.
Using one priority queue for all the readers would not work cor-
rectly as the last read tuple may differ across the readers. Therefore,
some readers may actually read correctly the tuple while others
may have already read a tuple with larger timestamp. Furthermore,
because we keep in the queues only a reference to the actual tuple,
the memory overhead is rather small. In modern systems usually
memory usage is not the bottleneck thus it is a valid choice to keep
late-arrivals and mitigate the information loss.

Getting tuples. For the getSSGTuple method (i.e., see Alg. 3) we
want to guarantee that the reader will be able to read tuples residing
in its priority queue (late-arrivals) and will exploit both the ready
and slack-ready tuples’ definitions. When a reader entity wants to

DEBS 17, June 19-23, 2017, Barcelona, Spain

retrieve a tuple from SSG the following steps are performed: (1) the
method checks if we have a tuple residing in the reader’s priority
queue and returns the first such tuple if so (lines 1 — 11 of Alg. 3),
(2) If the priority queue is empty then the method checks if the
next tuple to be read satisfies the ready tuple condition and returns
it if so (lines 12 — 22 of Alg. 3), (3) If the tuple is not ready, SSG
examines whether the slack-ready definition holds true and if so
it returns the tuple (cf. lines 23 — 28 of Alg. 3), and (4) if the tuple
is not slack-ready, SSG returns NULL (line 29 of Alg. 3) and the
reader entity will have to wait before it re-tries to read a tuple.

5.1.1 Analysis. The interface of SSG is, by design, aware of
tuples that have been delayed and thus execution-dependent, with
respect to how streams are delivered to the system. The properties
below describe the possible behavior of SSG during different parts
of an execution.

First, we define the properties of an ideal deterministic object
O that has an interface for receiving tuples from multiple streams
and gives an output stream as a result, which essentially models a
streaming operator, or a component of it. We assume one writer
thread for each input stream S; and one reader thread that produces
the output stream R, using the same identifiers for threads and
streams. In the settings of the common shared memory model [10],
we consider a history H of an object as a sequence of invocations
and responses of its methods. We call sub-history a continuous (i.e.,
not skipping any method invocation or response) sub-sequence
of H. We call thread sub-history H|S; the projection of H that in-
cludes only methods executed from S;. In the following, given the
streaming setting of the problem, we assume infinite histories. Each
tuple t received from an input stream S;, for O corresponds to
an invocation and response of the respective insert method (e.g.,
in the SSG object this would be the insertSSGTuple(t,S;) method
call). Respectively, a tuple ¢ of the output stream R, is the return-
ing result from a response of the appropriate method call (e.g., the
getSSGTuple(R) method for SSG).

Definition 5.1. Let two histories H and H’. O will have the same
input streams (as in the same sequences of tuples per stream) in H
and H’, if Vi the thread sub-history H|S; is equivalent to H’|S;.

Note, that if H and H’ have the same input streams, the way
that any two projections H|S; and H|S; interleave within H, might
be arbitrarily different from the way the respective projections
interleave within H’. Thus, we can reformulate the notion of a
deterministic stream operator for O (cf. Sec. 2.2) as follows:

Definition 5.2. O is deterministic if for any two histories H and
H’ with the same input streams, then the non-null responses of
H|R are equal and in the same order to the non-null responses of
H’|R (i.e. the same output stream).

We further say that an object is in a steady state, if for all possible
future sub-histories that have the same input streams, it is deter-
ministic. Essentially, a deterministic object O is always in a steady
state. For example, if two histories with the same input streams
were "frozen" to a point where the same input tuples have been
received, one could exchange the object O instances and maintain
the determinism property for the rest of the histories.

We will now argue that SSG will be deterministic for sub-histories
where the SLT threshold is not violated. We call a sub-history

119

N. Zacheilas et al.

SLT-compatible if during the sub-history the condition max;s —
merge;s < SLT holds, and respectively SLT-incompatible if the
condition is violated within the sub-history.

PROPERTY 1. SSG will not return slack-ready tuples during an
SLT-compatible history.

Proor SKETCH. Tuples will be returned as slack-ready only if
they have been stalled (while ¢.ts > merge.ts holds and they have
not been returned as ready) for more than SLT time. But this can
only happen if merge.ts differs from max;s more than SLT, i.e.
within an SL-incompatible history. O

We can observe that if an entire history H is SLT-compatible,
then SSG behaves deterministically, as it returns only ready tuples
as ScaleGate [8]. However, describing what happens in a history
that consists of both SLT-compatible and SLT-incompatible sub-
histories is not straightforward.

Consider that SSG may return tuples out of timestamp order
when they are returned from a priorityQueue (cf. lines 2 — 11 in
Alg. 3). From Algorithm 2 we see that a tuple is added in the priority
queue of some reader only if that reader has already read a tuple
with higher timestamp. A reader will respectively read a tuple ¢
with t.ts > merge;s only if it is slack-ready at that point in the
history execution. Thus, we can see that the following holds:

PROPERTY 2. Ifa tuplet is added to the priorityQueue of a reader,
then there exists another tuple t’ that has been previously returned as
slack-ready to the same reader.

Assuming that within a history H all SLT-incompatible sub-
histories are of finite length, we can show:

THEOREM 5.3. For a long enough SLT -compatible sub-history, i)
SSG will reach a steady state in a finite amount of time, and ii) SSG
will remain in steady state for the remaining sub-history.

PRrROOF. Let h be an SLT-compatible sub-history of a history H.
By Property 1, no slack-ready tuple will be returned within h. Given
that previous SLT-incompatible sub-histories of H are of finite
length and by Property 2, in a finite amount of time proportional to
the size of the priorityQueues, the latter will become empty. This
is a steady state for the object, since no out-of-order and no slack-
ready tuples will be returned. Finally, because h is SLT-compatible,
the object will remain in steady state during h. O

Theorem 5.3 shows that not only SSG behaves well in SLT-
compatible histories, but, even after incompatible sub-histories,
deterministic behavior can be achieved again given enough time.

The following property characterizes the tuples returned from a
priorityQueue.

PROPERTY 3. Tuples returned from priorityQueues are at least
slack-ready.

Proor SKETCH. By Property 2, a tuple ¢ is inserted into a prio-
rityQueue if another tuple t” with t’.ts > t.ts has been returned as
slack-ready, i.e. maxTs—t'.ts > SLT. Thus, maxTs—t.ts > SLT. O

On top of Property 3, Alg. 3 checks if a tuple has become ready
before outputting it, further increasing the monitoring accuracy.

Maximizing Determinism in Stream Processing Under Latency Constraints

5.2 SLTuner’s Components

In this section we provide the implementation details of the three
components (i.e., Estimator, Trigger and Optimization) that are uti-
lized by the SLTuner in order to tune SLTy, Yop € Operators.

5.2.1 Estimator Component. The Estimator component captures
the impact of SLT parameter in the operator’s latency (i.e., see Equa-
tion 1) and the amount of slack-ready tuples (i.e., see Equation 4)
that the operator will read. The Estimator creates two different pre-
diction models for each operator, the first for estimating its latency
(i.e, latencyop) and the second for estimating the number of slack-
ready tuples (i.e, slrTuplesop). Then it applies Equations 2 and 5 to
estimate the total end-to-end execution time (i.e., Latency) and the
total number of slack-ready tuples in the system (i.e., SLRTuples).
For our prediction models we use the following features vector:

Xop = (SLTop, hourep, minep, secop, |Pthreadsopl, SWop),

()

Yop € Operators

where hour,p, minep and secop correspond respectively to the hour,
minutes and seconds of the last tuple that has been processed by
operator op. We added these feature to detect periodic patterns in
the input stream similarly to [24]. Furthermore, we use the SWy,, as
a feature because the size of operator’s sliding window will affect
the operator’s processing latency.

We decided to use a well-known technique, Gaussian Processes [18],
that has been efficiently applied in similar context [24]. Gaussian
process is a non-linear non parametric model and is an extension
of the multivariate Gaussian distribution for infinite collection of
real-valued variables. In order to estimate the two metrics we used
the following Gaussian distributions:

™

slrTuplesop(Xop) ~ N(§(Xop). var:(Xop)), Yop € Operators (8)

latencyop(Xop) ~ N(f(Xop), vari(Xop)), Yop € Operators

where f()?op) and §(Xop) will be the mean of the Gaussian distri-
butions while var; (X,p) and varz(¥op) will be the corresponding
variance or uncertainty of the estimations. These functions are
computed using historical data and then the system uses Equa-
tions 7 and 8 for estimating the two metrics of interest. In most
cases Gaussian Processes require more time for the training phase
than simpler techniques like Linear Regression. However, when the
model is trained once as in our case, the training overhead can be
tolerated as it will help the system to capture the SLT parameter’s
impact more accurately. It should be clear that the user can easily
plug-in different prediction techniques in our system.

5.2.2 Trigger Component. For determining when the optimiza-
tion algorithm that tunes the slack threshold should be triggered
we decided to examine the applicability of a commonly used sched-
uling metric, laxity [23], that depicts how close the estimated execu-
tion time is to the user-defined deadline. More formally, Laxity =
Deadline — Latency where Latency is the estimated end-to-end
execution time. The smaller the Laxity value is, the higher will
be the probability of a deadline miss. Therefore, the optimization
algorithm is triggered when the following condition is true:

Laxity <0)

We also need to accommodate cases when Laxity has a large value
and the operator’s latency is very small, and thus it may be possible

120

DEBS 17, June 19-23, 2017, Barcelona, Spain

to increase the SLT,, to minimize the amount of slack-ready tuples
that will be processed. For this reason we also run the optimization
algorithm when the following condition is true:

Laxity > a X Deadline

(10)

where a € (0,1) is a user-defined parameter that determines when
the Laxity metric has a large value. The greater the o parameter
is the lower should be the application’s Latency in order to trigger
the algorithm, as it will be harder to satisfy Equation 10.

5.2.3 Optimization Component. In order to solve our optimiza-
tion problem we applied a greedy Hill climbing algorithm that
enables us to tune the slack threshold parameters fast and effi-
ciently. First, we set the SLT parameters to some initial values and
then gradually increase their values, estimating at each step the
corresponding latency and the total number of slack-ready tuples
that will be processed. In each step we increase the SLT,, that leads
to the minimization of the slack-ready tuples metric and at the same
time satisfies the deadline constraint. We stop the search if we fail
to find a valid increase and return the currently found parameters.
The performance of the algorithm depends on the SLT's and the step
sizes we use for increasing them. When we apply the algorithm due
to Equation 9, the search should start with small initial SLT values
in order to quickly satisfy the deadline constraint. Then, by grad-
ually increasing the slack thresholds we will be able to minimize
the amount of slack-ready tuples that we will read. In case that the
algorithm is triggered due to Equation 10 we start the search with
the current SLT's as these parameters satisfy the deadline constraint.
Finally, we decided to invoke this greedy algorithm and avoid more
elaborate techniques like [22] in order to detect fast the appropriate
slack thresholds as we examine the problem in streaming context.

6 EVALUATION

Setup. We evaluated our approach using a streaming smart city ap-
plication running in Dublin city. The app receives data from sensors
mounted on top of public buses* which report how delayed is a bus
from reaching the next bus stop. It also receives data from SCATS
sensors® that measure the traffic flow in road intersections. We have
911 buses and each bus sends a new report every 20 seconds, while
we have 3, 504 SCATS sensors and each SCATS sends a new report
every minute. We increased the rate with which reports are emitted
by the sensors, to stretch our system’s performance. The goal of the
app is to detect areas that are experiencing high traffic congestion.
First we split Dublin city into sub-areas and then for each area we
monitor reports from both input sources in a sliding window of 5
seconds (i.e., SW, = 5,000) and trigger a congestion event when a
bus reports a congestion event and in the same area a SCATS sensor
has reported a traffic flow larger than a specified value. Our exper-
iments run on a server equipped with Intel(R) Core(TM) i7-3770
3.40GHz CPU and 16 GB RAM.

Comparison against ScaleGate and K-slack. In the first set of
experiments we compare SSG against the ScaleGate and K-slack
data structures in terms of the overhead that is added due to the use
of extra synchronization parameters as we described in Section 5.1.

“https://data.dublinked.ie/dataset/dublin-bus- gps-sample-data-from-dublin-city-c
ouncil-insight-project
Shttps://data.dublinked.ie/dataset/scats-dcc-jan2013

DEBS 17, June 19-23, 2017, Barcelona, Spain

ScaleGate C—1

800000

600000

#Processed Tuples
S
o
o
o
o
o

200000

0

0 10 12

4#Ncges 8

4
#Threads

Figure 8: Tuples reading Figure 9: Processed tuples
overhead. using varying number of
nodes.
Algorithm NRMSE; (%) | NRMSE;(%) | Time (sec)
Gaussian Processes 10 25 2
Linear Regression 20 26 0.06
Isotonic Regression 19 26 0.2
SVM 15 25 4

Table 1: Evaluation of different prediction algorithms.

We decided to compare our data structure against K-slack as it was
utilized by all previous works that studied the determinism problem
under latency constraints [16, 17].

In order to be able to capture the overhead of the synchroniza-
tion on the reading time, we considered a benchmark that readers
only retrieve tuples from the data structure and do not perform any
processing. We used two writers and each one generated 20, 000
tuples. As it can be observed in Figure 8, ScaleGate has lower aver-
age reading time than SSG due to the fact that the latter adds extra
synchronization overhead due to the extra AtomicLong variables
that are used for keeping the maximum tuples’ timestamps that
have been returned to the readers. However, even when 8 threads
are executing concurrently the overhead is minimal as the average
reading time is less than 0.002 ms. Furthermore, SSG is able to
support significantly lower reading time than K-slack due to the
fact that SSG is a lock-free approach in contrast to K-slack that uses
locks for synchronizing the readers and writers.

Scalability. In the second set of experiments we evaluated the
scalability of SSG when it is utilized on top of Apache Storm which
is one of the most well-known distributed stream processing sys-
tems. Furthermore, we wanted to illustrate that the synchronization
overhead for guaranteeing the deterministic processing is negligi-
ble and thus SSG can achieve nearly linear scalability when more
processing nodes are used. We run our traffic join application on
our local 8 nodes cluster where each node is equipped with 8 CPU
and 16 GB RAM. We run the experiments for 400 seconds and each
writer emitted 1,000 tuples per second. As it can be observed in
Figures 9 and 10, we varied the number of nodes and measured the
performance of the application in terms of processed tuples and
comparisons that are performed by the operators. There is an almost
linear increase of the processed tuples and performed comparisons
when we increase the number of join operators that execute con-
currently in the Storm application. Therefore, this points out that
SSG is able to exploit the parallelism offered by Storm without pe-
nalizing the application’s performance due to the synchronization
required for guaranteeing the determinism of the processing.
Prediction Model Evaluation. We evaluated the applicability of
Gaussian Processes used by the Estimator component for predicting
the latency and the amount of slack-ready tuples read by the join

121

N. Zacheilas et al.

1.46+10 250000 ‘
Bus Sensors ===
21 2e+10 200000 SCATS Sensors — /."
2 te+10 4
é 86409 2 150000 i
8 v
§ 6e+09 é 100000 o /
£ 4e+09 E -
S = 50000 Bt —
#2409 s
.
0g 10 12 06 30 200

4#Noges 8

Figure 10: Join comparisons
using varying number of
nodes.

700 150
Time (sec)

Figure 11: Reported times-
tamps from the two sources.

operator when we use varying slack threshold parameter. We run
the application for different slack threshold parameters and kept
the latency and the amount of slack-ready tuples as historical data.
We used these historical data for building the prediction models.
We compared Gaussian Processes against three commonly used
approaches, Linear Regression, Isotonic regression and Support Vector
Machines (SVM). In Table 1 we illustrate the performance of the
four different techniques. We evaluated the algorithms using 50% of
the historical data for training the models (i.e., approximately 923
samples) and used the other 50% as test data were we computed the
normalized mean squared error (NRMSE). NMRSE; corresponds
to estimation error of the latency metric while NMSRE; refers to
the error when estimating the number of slack-ready tuples. As it is
shown in Table 1, Gaussian Processes is a very powerful technique
that is capable of capturing the features of the training examples
and minimizes the NRMSE. However, Gaussian processes lead to
high execution time (i.e., 2 seconds). We argue that the overhead is
negligible as the training is performed only once.

SLTuner Evaluation. We compared the performance of our pro-
posed slack threshold adaptation technique, SLTuner, against other
commonly applied techniques in similar settings. Specifically, we ex-
amined the following approaches: (1) Static Low which uses a fixed
low slack threshold throughout the experiments, (2) Static High
which uses a fixed high slack threshold, (3) Max Timestamp [16]
which adjusts dynamically the K parameter in the K-Slack data
structure and was applied in our system by setting the K parameter
equal to the maximum observed delay in the incoming tuples and
(4) TCP Adaptation [17] which uses a TCP-like adaptation algo-
rithm that decreases by half the K parameter of K-slack when we
observe an increase in the latency, while it increases K by a fixed
amount (i.e., 1000 ms) when latency has decreased.

In these experiments both the bus and the SCATS input sources
emitted 500 reports per second. In order to compare our approach
against these alternative techniques, we delayed the bus input
source to increase the queuing delay and thus pinpoint the need of
relaxing the determinism guarantees. We considered two different
delaying policies, one that leads to periodic delays of the bus input
source, and another that has a constant increase in the delay of
the tuples fed by the bus input source and thus depicts an extreme
scenario. In Figures 1 and 11 we illustrate the tuples’ timestamps
that have been inserted by the two input sources in SSG as a func-
tion of time. As seen in Figure 1 (see Section 1), we have periods
with increased delay difference and this can violate the deadline
constraint, but also we have periods where the two sources report
similar timestamps so in such periods we could use a larger SLT

Maximizing Determinism in Stream Processing Under Latency Constraints

DEBS 17, June 19-23, 2017, Barcelona, Spain

S Rnrr— 25000 900
30000 Static Low ==== 20000 “ H
Static High - ‘ = H [
7 25000 Max Timestamp - — § 600 % 5 i
£ 50000 TCP Adaptation 215000 -~ Lo o i H
> Deadling ==+ - 3 gi LI
& 15000 D M1 S10000 ‘ E i i F[
T L P a | 2 3004ty A &
5 10000 S ; T = i ‘ §-
: Y \ L7 C A LY 1 H =
5000 [ARLEAN A %000 TR T 1 { * E ﬂf 3{\[
0 0 _ 3 j !
0 50 100 150 200 0 50 10 150 200 0 10 150 200 0 50 100 150 200
Time (sec) Time ?sec\ Time?sec\ Time (sec)

(a) Latency overtime (b) SLT parameters overtime

(c) Slack-ready tuples overtime (d) Detected Events

Figure 12: Comparison of different SLT tuning techniques when bus input source is delayed using a Zipf distribution (For

results’ clarity we added label only on the first figure).

SLTuner ——
150000 Static Low ==== 150000
. Static High -----
3 Max Timestamp -+ — T
E 100000} TCP Adaptation 0 g 100000
> Deadline == —
c [H
2 @
S 50000 50000 |-
007 ""80 100 150 200 00 50 _ 100 150 200
Time (sec) Time (sec)

(a) Latency overtime (b) SLT parameters overtime

#Slack-Ready Tuples

15000 1200
12000 2 ool t
[
>
9000 i
8 600¢
6000 5
®
3000 g 8001
S i 0200 0 6015
Time (sec)

. 100 15
Time (sec)

(c) Slack-ready tuples overtime (d) Detected Events

Figure 13: Comparison of different SLT tuning techniques when bus input source is constantly delayed (For results’ clarity we

added label only on the first figure).

parameter to minimize the number of slack-ready tuples that will
be processed. In contrast, in Figure 11 it can be observed that the
difference between the reported timestamps constantly increases
therefore we have to sacrifice determinism guarantees in order to
satisfy the deadline constraint.

In the first delay policy we used a Zipf distribution to delay tuples
arriving from the bus input source. More specifically, for 20 seconds
we delayed the tuples using 1.0 as the exponent with the maximum
delay being 10 ms while for the next 50 seconds the Zipf exponent
was 0.35 and the maximum delay 2 ms and repeated this delaying
pattern throughout the application’s execution. The application’s
deadline was set to 6, 000 ms. In Figures 12(a), 12(b) we illustrate the
operator’s latency and the SLT parameters that were used through-
out the experiments. Furthermore, in Figures 12(c), 12(d) we depict
the number of slack-ready tuples and the detected events. SLTuner
is able to efficiently satisfy the deadline constraint and at the same
time minimizes the amount of slack-ready tuples. In contrast, the
Static Low approach while it minimizes the latency, it also leads
to an increased amount of slack-ready tuples that can impact the
detected events due to the shift in the operator’s sliding window.
On the other hand the Static High technique does not have slack-
ready tuples and detects all the events but at the cost of significant
increase in the latency that causes deadline violations during the
periods of high delay. The TCP Adaptation technique is a re-active
technique and thus it adjusts the SLT parameter after the deadline
has been violated. Nevertheless, it is able to process less slack-ready
tuples and thus minimize the number of undetected events. Finally,
the Max Timestamp approach does not process slack-ready tuples
as it uses the largest possible time difference as the slack threshold
parameter; however, this violates the deadline constraint.

In the second delay policy each tuple coming from the bus input
source was delayed for 1 ms before it was inserted to the SSG data
structure. The deadline in this application was set to 35,000 ms. As

122

it can be observed in this case is not easy to satisfy the deadline (i.e.,
Figure 13(a)) without increasing significantly the number of slack-
ready tuples that will be processed (i.e., Figure 13(c)). Furthermore,
because the delay between the input sources constantly increases
becoming significantly larger than the operator’s 5 seconds sliding
window, late-arrivals will not contribute on the operator’s results
as the sliding window will shift due to the reading of slack-ready
tuples and thus no events will be detected (i.e., Figure 13(d)).
SLTuner is able to detect the exact moment that the delay in the
input sources will penalize the application’s deadline (i.e., at approx-
imately 75 seconds) and determines to decrease the SLT parameter
to 50, 000 (see Figure 13(b)). In contrast, the Static High technique is
able to process only ready tuples but it violates the deadline require-
ment. Static Low always satisfies the deadline constraint but even in
the first 100 seconds where the constraint would not be violated if
we use a large SLT parameter; Static Low approach processes a large
number of slack-ready tuples and thus misses more events than the
SLTuner technique as we illustrate in Figure 13(d). Furthermore,
our approach outperforms the other two adaptation techniques as
it is able to perform fine-grained tuning of the SLT parameter and
also it exploits a pro-active mechanism thus it can detect when the
deadline will be violated before the violation actually occurs.

7 RELATED WORK

One of the first approaches proposed for the determinism problem
in stream processing systems is punctuation based techniques [15].
The basic idea is to use special tuples in the event streams called
punctuations to indicate that no future tuples will arrive in the
stream with timestamp less than the punctuation’s timestamp. Most
of the existing works assume that punctuations are provided by
some external source or can be generated a priori using historical
data. However, this is not realistic in many real-world applications.
For this reason an adaptive technique [20] has been proposed that

DEBS 17, June 19-23, 2017, Barcelona, Spain

aims to capture the skew between the streams and automatically
generate the appropriate punctuations. In order to add this punctu-
ation we have to wait for all the late arrivals, so the problem ends
up having this trade-off between latency and results’ accuracy.

The second commonly applied technique is using a buffer-based
data structure to keep incoming tuples for a time period before
processing them. The idea is to keep the data as long as possible to
avoid determinism violations. Aurora [1], one of the first stream
processing systems, enables the user to set a fixed buffer size. Tech-
niques like [16] propose the dynamic adaptation of the buffer size
in order to avoid out-of-order tuples but without examining the
implications in the latency. Works like [12, 13] take into account
the latency and adjust the buffer size dynamically in order to min-
imize it but are operator specific (i.e., in [12] they focus on joins
while in [13] they examine the problem for aggregations) so they
do not provide a generic approach like ours which would work with
any operator type. Furthermore, both techniques are reactive while
we provide a proactive adaptation enabling us to avoid possible
deadline violations before they actually occur.

The third approach for solving similar problems is using specu-
lative techniques [19]. The main idea of such works is to process
tuples without any delay and recompute the results in case of out-of-
order tuples. However, in many real world applications out-of-order
tuples is a common phenomenon so the recomputation cost may
affect significantly the system’s performance. In [17], the authors
combined speculation and buffer based techniques by using a K-
slack buffer with varying size (i.e., exploiting the TCP adaptation
technique described in Section 6) and applying speculation when
out-of-order tuples occurred. While this proposal minimizes the
operator’s latency it may affect its results’ accuracy. Finally, the
fourth approach for solving this problem is to apply approximation
based techniques like [14]. These techniques exploit special data
structures (e.g., histograms) to summarize the incoming data and
provide results as soon as possible [19].

8 CONCLUSIONS

In this work we have studied the problem of deterministic stream
processing under latency constraints. We have advanced state-of-
the-art in several ways: (a) We provide a novel data structure, SSG,
which enables us to trade-off latency for accuracy, (b) We proposed
a novel proactive technique for automatically adjusting the slack
threshold parameter of SSG in upcoming time windows enabling
us to avoid deadline violations and at the same time minimizing
the amount of slack-ready tuples. Our approach exploits the use of
Gaussian Processes for estimating the impact of the slack threshold
parameter on the latency and the amount of slack-ready tuples. We
use these estimations to determine when deadline violations will
occur and solve a single-objective optimization problem in order
to minimize the amount of slack-ready tuples and satisfy deadline
constraints. Our experimental results indicate a clear improvement
in the system’s performance when our approach is used, outper-
forming current state-of-the-art techniques.

ACKNOWLEDGMENT

This research has been financed by the European Union through the FP7 ERC
IDEAS 308019 NGHCS project and the Horizon2020 688380 VaVeL project,
the Swedish Foundation for Strategic Research under the project “Future

123

N. Zacheilas et al.

factories in the cloud (FiC)” (grant GMT14-0032) and the Swedish Research
Council (Vetenskapsradet) project “HARE: Self-deploying and Adaptive
Data Streaming Analytics in Fog Architectures” (grant 2016-03800).

REFERENCES

[1] Daniel J Abadi, Don Carney, Ugur Cetintemel, Mitch Cherniack, Christian Con-

vey, Sangdon Lee, Michael Stonebraker, Nesime Tatbul, and Stan Zdonik. 2003.

Aurora: a new model and architecture for data stream management. VLDB 12, 2

(2003), 120-139.

Apache Spark. 2017. https://spark.apache.org. (2017).

Apache Storm. 2017. http://storm.apache.org/. (2017).

Magdalena Balazinska, Hari Balakrishnan, Samuel R Madden, and Michael Stone-

braker. 2008. Fault-tolerance in the Borealis distributed stream processing system.

ACM TODS 33, 1 (2008), 3.

[5] Daniel Cederman, Vincenzo Gulisano, Yiannis Nikolakopoulos, Marina Papa-
triantafilou, and Philippas Tsigas. 2014. Brief announcement: concurrent data
structures for efficient streaming aggregation. In SPAA, Prague, Czech Republic.
76-178.

[6] Alan Demers, Johannes Gehrke, Mingsheng Hong, Mirek Riedewald, and Walker
White. 2006. Towards Expressive Publish/Subscribe Systems. In EDBT, Munich,
Germany. Springer, 627-644.

[7] Vincenzo Gulisano, Ricardo Jimenez-Peris, Marta Patino-Martinez, Claudio Sori-
ente, and Patrick Valduriez. 2012. Streamcloud: An elastic and scalable data
streaming system. Parallel and Distributed Systems, IEEE Transactions on 23, 12
(2012), 2351-2365.

[8] Vincenzo Gulisano, Yiannis Nikolakopoulos, Marina Papatriantafilou, and Philip-
pas Tsigas. 2016. Scalejoin: A deterministic, disjoint-parallel and skew-resilient
stream join. IEEE Transactions on Big Data (2016).

[9] Vincenzo Gulisano, Yiannis Nikolakopoulos, Ivan Walulya, Marina Papatri-

antafilou, and Philippas Tsigas. 2015. Deterministic Real-time Analytics of

Geospatial Data Streams Through ScaleGate Objects. In DEBS. ACM, New York,

NY, USA, 316-317.

Maurice Herlihy and Nir Shavit. 2012. The Art of Multiprocessor Programming,

Revised Reprint. Elsevier.

Yuanzhen Ji, Anisoara Nica, Zbigniew Jerzak, Gregor Hackenbroich, and Christof

Fetzer. 2016. Quality-Driven Disorder Handling for Concurrent Windowed

Stream Queries with Shared Operators. In DEBS, Irvine, CA. ACM, 25-36.

Yuanzhen Ji, Jun Sun, Anisoara Nica, Zbigniew Jerzak, Gregor Hackenbroich,

and Christof Fetzer. 2016. Quality-driven disorder handling for m-way sliding

window stream joins. In ICDE, Helsinki, Finland. IEEE, 493-504.

Yuanzhen Ji, Hongjin Zhou, Zbigniew Jerzak, Anisoara Nica, Gregor Hacken-

broich, and Christof Fetzer. 2015. Quality-driven processing of sliding window

aggregates over out-of-order data streams. In DEBS, Oslo, Norway. ACM, 68-79.

Chuan-Wen Li, Yu Gu, Ge Yu, and Bonghee Hong. 2011. Aggressive complex

event processing with confidence over out-of-order streams. Journal of Computer

Science and Technology 26, 4 (2011), 685-696.

Jin Li, Kristin Tufte, Vladislav Shkapenyuk, Vassilis Papadimos, Theodore John-

son, and David Maier. 2008. Out-of-order processing: a new architecture for

high-performance stream systems. VLDB (2008), 274-288.

Christopher Mutschler and Michael Philippsen. 2013. Distributed low-latency

out-of-order event processing for high data rate sensor streams. In IPDPS, Boston,

Massachusetts, USA. IEEE, 1133-1144.

Christopher Mutschler and Michael Philippsen. 2013. Reliable speculative pro-

cessing of out-of-order event streams in generic publish/subscribe middlewares.

In DEBS, Arlington, Texas, USA. ACM, 147-158.

Carl Edward Rasmussen and Christopher K. I. Williams. 2005. Gaussian Processes

for Machine Learning (Adaptive Computation and Machine Learning). The MIT

Press.

Esther Ryvkina, Anurag S Maskey, Mitch Cherniack, and Stan Zdonik. 2006.

Revision processing in a stream processing engine: A high-level design. In ICDE,

Atlanta, Georgia, USA. IEEE, 141-143.

Utkarsh Srivastava and Jennifer Widom. 2004. Flexible time management in data

stream systems. In SIGMOD, Paris, France. ACM, 263-274.

Haékan Sundell and Philippas Tsigas. 2003. Fast and lock-free concurrent priority

queues for multi-thread systems. In IPDPS, Nice, France. IEEE, 609-627.

Tao Ye and Shivkumar Kalyanaraman. 2003. A recursive random search algorithm

for large-scale network parameter configuration. ACM SIGMETRICS 31, 1 (2003),

196-205.

Nikos Zacheilas and Vana Kalogeraki. 2014. Real-time scheduling of skewed

mapreduce jobs in heterogeneous environments. In ICAC, Philadelphia, PA, USA.

Usenix, 189-200.

Nikos Zacheilas, Vana Kalogeraki, Nikolas Zygouras, Nikolaos Panagiotou, and

Dimitrios Gunopulos. 2015. Elastic Complex Event Processing exploiting Predic-

tion. In BigData, Santa Clara, CA, USA. IEEE, 213-222.

[2
3
[4

(10]

(11]

=
)

(13

(14]

[15]

(17]

(18]

[19

[20]

[22

(23]

[24

