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ABSTRACT
The problem of coping with the demands of determinism and meet-
ing latency constraints is challenging in distributed data stream
processing systems that have to process high volume data streams
that arrive from di�erent unsynchronized input sources. In order
to deterministically process the streaming data, they need mech-
anisms that synchronize the order in which tuples are processed
by the operators. On the other hand, achieving real-time response
in such a system requires careful tradeo� between determinism
and low latency performance. We build on a recently proposed
approach to handle data exchange and synchronization in stream
processing, namely ScaleGate, which comes with guarantees for
determinism and an e�cient lock-free implementation, enabling
high scalability. Considering the challenge and trade-o�s implied
by real-time constraints, we propose a system which comprises
(a) a novel data structure called Slack-ScaleGate (SSG), along with
its algorithmic implementation; SSG enables us to guarantee the
deterministic processing of tuples as long as they are able to meet
their latency constraints, and (b) a method to dynamically tune the
maximum amount of time that a tuple can wait in the SSG data-
structure, relaxing the determinism guarantees when needed, in
order to satisfy the latency constraints. Our detailed experimental
evaluation using a tra�c monitoring application deployed in the
city of Dublin, illustrates the working and bene�ts of our approach.

CCS CONCEPTS
• Information systems → Stream management;

KEYWORDS
Complex Event Processing, Stream Processing, Deterministic Pro-
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1 INTRODUCTION
Distributed stream processing systems (DSPS) such as Apache’s
Storm [3] and Spark Streaming [2] provide state-of-the-art systems
for processing potentially unbounded sequences of tuples with low
latency and high velocity. Continuous processing of large volumes
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of data streams presents an important challenge in a wide range of
big data application domains ranging from tra�c monitoring [24]
to �nancial data processing [6]. These systems invoke continuous
queries in which incoming tuples are processed in sliding windows
and executed on multiple computing nodes, in order to detect events
of interest in real-time.

The problem of providing deterministic operation for stream
processing applications has been studied recently. A stream op-
erator’s implementation is considered deterministic, if, given the
same sequences of input tuples, the same sequence of output tuples
will be produced, independently of the tuples’ inter-arrival time.
In [8] the ScaleGate data structure guarantees that data arriving
from di�erent input streaming sources are processed in the correct
order by the join operator, while it has also been used for scalable
streaming aggregates [5] and analytics [9]. ScaleGate stalls the pro-
cessing of each tuple until it is certain that no other tuple with
smaller timestamp will arrive. A similar bu�er-based technique has
been proposed in [16] where they exploit the use of the K-slack
data structure for keeping incoming tuples, and process them only
when K time units have elapsed since the tuple has been inserted
in the data structure.

Existing approaches have two important limitations: First, both
ScaleGate and K-slack focus on the performance of a single operator
and do not examine the problem in the context of complex graphs
where the application consists of multiple operators. A second im-
portant aspect that has not been considered by these techniques is
that there are often real-time response requirements to be satis�ed
which con�ict with the fact that deterministic operation requires
that tuples are stalled often for large amounts of time until they are
ready for processing. Many applications, such as tra�c and environ-
ment monitoring applications have low response time requirements
and can tolerate approximate results [12]. For example, in a tra�c
monitoring application the users want to know the current tra�c
conditions as fast as possible and can tolerate some inaccuracy in
the results (i.e., missing some tra�c updates). Nevertheless, it is
still desirable to minimize the amount of missed events.

A few recent works [12, 13] have been proposed that aim at
providing determinism guarantees and meeting application’s end-
to-end response time requirements. However, they are operator
speci�c (i.e., in [12] they focus on join operators while in [13] they
examine the problem for aggregate operators) and do not provide
a generic approach which would work with any operator type
and complex application graphs. Furthermore, in [11] the authors
examine the problem of placing K-slack bu�ers in an application
graph comprising count and join operators in order to share tuples
between them and minimize the memory usage. However, they do
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Figure 1: Reported times-
tamps from the two sources.
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Figure 2: Queueing Thresh-
old’s impact on the join oper-
ator’s latency.
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Figure 3: Queueing Thresh-
old’s impact on the number
of detected events.
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Figure 4: Queueing Thresh-
old’s impact on out-of-order
tuples.

not consider the end-to-end response time requirements and are
limited to two operator types (i.e., join and aggregate).

In this work we study the problem of maximizing the deter-
ministic operation for distributed stream processing applications
under latency constraints. We consider applications with real-time
response requirements (i.e., tra�c monitoring systems, �nancial
applications). We de�ne as latency the end-to-end execution time
(including queueing delays) of tuples that are processed by a stream
processing application graph comprising multiple stream process-
ing operators. The problem is challenging as we have to minimize
the impact of out-of-order tuples on the accuracy of the operators’
results, and also satisfy the application’s response time require-
ments. To satisfy these requirements we have to bound the amount
of time (i.e., provide an upper queueing threshold) that a tuple can
be stalled for guaranteeing deterministic processing. When a tuple
has resided on the operator’s input bu�er more than this thresh-
old then it is read and processed by the operator. Using a small
queueing threshold improves the latency as tuples will be stalled
for a short time period. However, this can lead to processing many
tuples that violate the determinism constraints.

In Figures 1, 2, 3 and 4 we illustrate with an example how com-
munication delays can a�ect the latency of a join operator and their
e�ect on determinism in terms of our ability to accurately detect
events. This example is from a tra�c monitoring system deployed
in the Dublin Smart City [24] where the City Operator performs
a join operation (in a 5 second sliding window) on streaming data
from two separate input tra�c data sources, Bus trajectory data
from buses moving around the city and SCATS measurements of
tra�c �ow in junctions, to detect areas of high tra�c congestion
across the city. Figure 1 shows the timestamps of the tuples of the
two input sources over time where we observe that the Bus input
source exhibits periods of higher communication delay (e.g., in the
�rst 25 seconds the bus data tuples arrive with a delay of 7 seconds).
This increased delay can lead to out-of-order tuples unless we stall
incoming tuples on the operator’s input bu�er using the queue-
ing threshold parameter. In Figure 2 we depict how the amount
of time that tuples will wait in the operator’s bu�er before they
are processed (i.e., in order to guarantee determinism), can a�ect
the operator’s response time (i.e., latency). During periods of high
delay, a large queueing threshold can lead to an increase on the
operator’s latency. In contrast, when we utilize a small queuing
threshold (i.e., 1, 000 ms) the latency is kept steady.

However, this can a�ect the total amount of detected events (i.e.,
Figure 3) and the number of out-of-order tuples (i.e., Figure 4). More
speci�cally, when we use small thresholds the operator will not

read tuples in their correct timestamp-order and therefore it may
incorrectly shift its 5 seconds sliding window. Due to the shifting of
the sliding widow some comparisons between the tuples of the two
input sources will not be performed and thus fewer events will be
detected. In Figure 4, we illustrate the number of out-of-order tuples
of the corresponding time periods presented in Figure 2 when we
use di�erent queueing thresholds. It can be observed that in periods
of high delay the number of out-of-order tuples increases when
small queueing thresholds are used.

In this work we propose a novel system that enables deterministic
stream processing under latency constraints by examining the trade-
o� between the application’s deterministic operation and its real-
time response requirements. We propose a novel data structure,
called Slack-ScaleGate (SSG), which exploits the notion of slack-
ready tuples and enables us to bound the maximum amount of
time that a tuple will be stalled to meet its latency constraint. We
pro-actively adjust the SSG’s slack threshold parameter to satisfy
latency constraints and at the same time to minimize the amount of
slack-ready tuples that are read from SSG. To address the e�ects of
the relaxation of the determinism, we handle late-arrivals that may
occur in order to maximize the operator’s deterministic operation.
The main contributions of this work are the following:

• We de�ne the notion of slack-ready tuples in order to cap-
ture the maximum acceptable latency to satisfy the user’s
response time requirements. We exploit this de�nition in
our data structure, called SSG, which allows us to (a) maxi-
mize deterministic processing while (b) meeting real-time
latency criteria. We analyze the determinism properties of
SSG with respect to the input streams and their e�ect on
the object’s execution, and show that SSG can transition
back to determinism even after the latter has been relaxed.

• We formulate the problem of maximizing the deterministic
stream processing under latency constraints as a single-
objective optimization problem that targets at minimiz-
ing the amount of slack-ready tuples that are read due to
latency-related performance goals.

• We provide a novel system which exploits the SSG data
structure to guarantee the deterministic stream process-
ing of incoming tuples and also automatically tunes the
slack threshold parameters to solve the aforementioned
optimization problem. Our approach: (i) applies Gaussian
Processes to capture the impact of the slack threshold pa-
rameter on the application’s latency and the amount of
slack-ready tuples that will be read, and (ii) adjusts the
time-window parameters using a greedy algorithm that

113



Maximizing Determinism in Stream Processing Under Latency Constraints DEBS ’17, June 19-23, 2017, Barcelona, Spain

𝑺𝟏

𝑺𝑵

𝒕𝟏
𝟏

𝒕𝟐
𝟏

…

𝒕𝒉𝒓

𝒕𝒉𝒓

𝒐𝒑𝟏

𝒕𝟏
𝟏𝒕𝟏

𝑵𝒕𝟐
𝑵𝒕𝟐

𝟏

𝒕𝟏
𝑵

𝒕𝟐
𝑵

…

𝒕𝒉𝒓

𝒕𝒉𝒓

𝒐𝒑𝟐

𝒕𝟏
𝟏

…
𝒕𝟏
𝟏…

𝒎𝒆𝒓𝒈𝒆𝒅
𝒔𝒕𝒓𝒆𝒂𝒎

𝒎𝒆𝒓𝒈𝒆𝒅
𝒔𝒕𝒓𝒆𝒂𝒎

𝒎𝒆𝒓𝒈𝒆𝒅
𝒔𝒕𝒓𝒆𝒂𝒎

𝑳𝒂𝒕𝒆𝒏𝒄𝒚

𝒍𝒂𝒕𝒆𝒏𝒄𝒚𝒐𝒑𝟏 𝒍𝒂𝒕𝒆𝒏𝒄𝒚𝒐𝒑𝟐

𝑶𝒑𝒆𝒓𝒂𝒕𝒐𝒓𝒔

In
p

u
t 

So
u

rc
e

s

𝑷𝑻𝒉𝒓𝒆𝒂𝒅𝒔𝒐𝒑𝟏 𝑷𝑻𝒉𝒓𝒆𝒂𝒅𝒔𝒐𝒑𝟐

Figure 5: Application graph in our system.

enables us to avoid deadline violations and to minimize
the amount of slack-ready tuples that will be processed.

• Finally, we provide an extended experimental evaluation
which demonstrates the bene�ts of our approach using a
real-world tra�c monitoring application. Our experimental
results illustrate that our approach is practical, exhibits
good performance, and e�ectively manages to relax the
determinism guarantees only when it is truly necessary to
meet the application’s real-time performance criteria.

2 PRELIMINARIES
In this section, we describe our stream model and provide the
necessary determinism de�nitions.

2.1 Stream Basics
A data stream Sj is an unbounded sequence of tuples t

j
i where

i represents the arrival order of the tuple within the Sj stream.
Each tuple has a timestamp, denoted by t

j
i .ts which indicates the

time that the tuple was generated at the data source. A tuple t
j
k

is characterized as a late-arrival or an out-of-order tuple1 if there
exists another tuple, t ji , in Sj such that i < k and t

j
i .ts > t

j
k .ts .

An application running in a stream processing system is typically
represented as a graph where nodes correspond to processing oper-
ators (such as joins or top-k operators) and edges denote the com-
munication among the operators. Let Operators denote the set of
operators that comprise the application graph. Each op ∈ Operators
is implemented using multiple threads, PThreadsop , that concur-
rently process the streaming data as can be observed in Figure 5. An
operator can be either stateless or stateful [7]. The main di�erence
of the two operator types is that stateful operators process and
keep the incoming data in memory bu�ers for a �xed amount of
time, while stateless operators only process the tuples. We de�ne
as SWop the time the information carried by a certain tuple resides
on the operator’s bu�er. If the operator is stateless this metric will
be equal to zero as no tuple needs to be kept.

An operator can receive tuples from multiple input streams. As
we illustrate in Figure 5, tuples arriving from di�erent input streams
are merged into a new stream before they can be read and processed
by the operator. We assume that the input streams deliver tuples
with increased timestamps (i.e., each individual data stream does not
produce out-of-order tuples). We argue that this assumption holds
true in many use cases and more speci�cally in tra�c monitoring
1in our model the terms late-arrival and out-of-order tuple denote the same notion so
we use them interchangeably

applications like the ones we study in our experimental evaluation
(see Section 6) where data are reported by sensors at �xed time
intervals. In such applications it is not possible to have out-of-order
tuples in the input sources as the sensors produce ordered reports
(e.g., a bus sensor cannot produce a report for 10 : 30 pm and then
generate a report for 10 : 15 pm). However, despite the fact that
sources deliver tuples with the correct sequence, there is no guaran-
tee that tuples will be inserted in the correct timestamp-order on the
operator’s merged stream due to communication or processing de-
lays which occur in the arrival of the tuples from the input streams.
Therefore the operator will receive and process late-arrivals from
the merged-stream unless a mechanism that orchestrates the tuples
processing order is provided.

2.2 Determinism and ready tuples
A stream operator is considered deterministic, if, given the same
sequences of input tuples, the same sequence of output tuples will
be produced, independently of the streams’ inter-arrival times and
processing order. It is very important to guarantee the deterministic
processing of input tuples for applications like click stream analysis
and tra�c monitoring due to the fact that non-determinism can
cause money loss or missed events. Deterministic stream processing
is achieved by merging the timestamp-sorted tuples coming from
di�erent streams and feeding the operator with a timestamp-sorted
stream of ready [8] tuples.

De�nition 2.1. Ready Tuple. Let t ji be the i-th tuple from timestamp-
sorted stream Sj . t ji is ready to be processed if t ji .ts ≤ merдets ,
where merдets = mink {tkl .ts} is the minimum timestamp among
the timestamps in the set of tuples comprising the latest received
tuples tkl from each timestamp-sorted stream Sk .

To guarantee that only ready tuples will be read by the operators,
one approach is to use dedicated operators to merge incoming tuples
from multiple sources such as Input Mergers [7] and SUnions [4].
ScaleGate [8] is a recently proposed data structure that adopts a
di�erent approach, without requiring the use of extra operators.
ScaleGate2 encapsulates the necessary communication between
the input sources and operator’s processing threads in order to
decide whether a tuple is ready or not. ScaleGate’s algorithmic
implementation is based on a lock-free implementation of the skip
list [21] data structure, to maintain a timestamp-sorted multi-level
linked list of the input tuples and enable concurrent insertions with
probabilistically logarithmic overhead, together with a novel �ag
mechanism to e�ciently detect ready tuples.

3 MODELING OF THE PROBLEM
In this section we model the problem of maximizing the determin-
ism under latency constraints.

In order to guarantee the deterministic processing of tuples, op-
erators must read only ready tuples. However, this requires stalling
arriving tuples until their timestamp is less than the merge times-
tamp. The amount of time that a tuple should wait before it is
considered ready depends on the rate with which tuples arrive in
the system. So if the input source experiences delays (e.g., due to

2https://github.com/dcs-chalmers/ScaleGate_Java
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network communication) this will lead to an increase of the time
required to read a ready tuple as the merge timestamp is updated
only when we have received input from all the input sources (in-
cluding the one experiencing the delays). This stall of tuples for
satisfying the ready condition can be seen as an extra queuing delay
that a�ects the operator’s execution time (i.e., latency) and thus the
execution time of the entire stream processing application.

In this work we provide a model that considers the impact of
these queuing delays on the application’s end-to-end execution
time. Assume a distributed stream processing application repre-
sented as a processing graph whose nodes correspond to processing
Operators (such as join or aggregate operators) and edges denote
the communication among the operators (i.e., see Section 2.1). Let
latencyop ,∀op ∈ Operators denote the time required by an opera-
tor to read and process an incoming tuple, computed as follows:

latencyop =maxthr ∈PThreadsop {queue_delaythr ,op
+proc_t imethr ,op }, ∀op ∈ Operators

(1)

where the operator’s latency is a function of the time required to pro-
cess the tuple by one of the operator’s processing threads (expressed
via the proc_timeop,thr metric) and the corresponding queueing
delay queue_delaythr,op at the thread’s thr queue. Threads may
process tuples with di�erent speeds so the latency of the opera-
tor depends on the execution time of the slowest running thread.
Deterministic processing indicates higher queue_delaythr,op and
thus higher latencyop as tuples would need to be stalled until they
become ready to be processed. Let commop−>op′ depict the commu-
nication time between operator op and its downstream operator op′ .
We can then compute the end-to-end Latency of the application
graph via the following Equation:
Latency =maxpath

∑

op∈Operators

(latencyop + commop−>op′ )

(2)
where maxpath is used in the case that the application is repre-
sented as a graph with more than one paths, so that the end-to-end
execution time of the application is the maximum path latency.
Application users can use the Deadline constraint to impose a con-
straint on the time it should take for data tuples to be processed
end-to-end. For example, in the tra�c monitoring system we de-
scribed in Section 1, the City Operators expect that tra�c events
(i.e., congestion, delays) should be detected within one minute (from
the time the data is generated at di�erent input sources, a join op-
eration is performed and a �nal result is returned).

When the Latency value exceeds the Deadline constraint then a
deadline violation has occurred. Our goal in this work is to avoid
such violations so we have to satisfy the following constraint:

Latency < Deadline (3)

To satisfy the application’s deadline requirements, it is necessary to
minimize the amount of time that tuples will be stalled until they
are considered ready, thus we relax De�nition 2.1. More speci�cally,
the idea is to bound the maximum amount of time that a tuple
will wait before it is read by the operator’s processing threads.
Therefore, we propose the notion of slack-ready tuples:

De�nition 3.1. Slack-Ready Tuple. Let t ji be the i-th tuple from
timestamp-sorted stream Sj . t ji is slack-ready to be processed if
maxts − t ji .ts > SLT , wheremaxts =maxk {tkl .ts} is the maximum
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Figure 6: Example of slack-ready tuples’ impact on a join
operator that processes tuples from two input sources.

timestamp among the timestamps in the set of tuples comprising
the latest received tuples tkl from each timestamp-sorted stream Sk
and SLT ∈ [0,maxts −merдets ] is the user-de�ned slack threshold
parameter that controls the time duration that a tuple can be stalled.

Our goal is to exploit the slack-ready tuples de�nition in our
system by adding the SLTop parameter on each operator op ∈
Operators . Essentially, feeding an operator with slack-ready tu-
ples guarantees that there is a constraint on how much a tuple will
be stalled in order to minimize the probability that the application
deadline is violated. This approach relaxes the operator’s determin-
ism so if an operator reads and processes slack-ready tuples then a
tuple with lower timestamp arriving from a source that experiences
delays will be read and processed by the operator as an out-of-order
tuple. These out-of-order tuples will contribute on the operator’s
results as long as the sliding window they belong has not been
shifted due to the reading and processing of slack-ready tuples.

The SLT value is meaningful when it is bounded to maxts −
merдets as this is the maximum di�erence that can occur between
any two tuples that are added by the input sources. When this
upper threshold (or a higher one) is used the slack-ready tuples
end up being equivalent to the ready tuples (i.e.,maxts − t ji .ts ≥
maxts −merдets ⇒merдets ≥ t

j
i .ts). We should clarify that De�-

nitions 2.1 and 3.1 are not mutually exclusive. A tuple that is ready
can also be characterized as slack-ready if it is processed when the
di�erence of its timestamp with the maximum timestamp is greater
than SLT and at the same time its timestamp is smaller than the
merge timestamp. However, the ready de�nition provides stronger
determinism guarantees as all tuples will be read in the correct

115



Maximizing Determinism in Stream Processing Under Latency Constraints DEBS ’17, June 19-23, 2017, Barcelona, Spain

timestamp-order, but at the expense of extra queueing delay as we
cannot control the amount of time that tuples will be stalled. We
elaborate with the following example on (a) how the SLT parameter
can bound the amount of time that a tuple will be stalled and (b)
how SLT may a�ect the accuracy of the operator’s results.

Example Description. In Figure 6 we illustrate a join operation
on two input sources (i.e., S1 and S2) and its read requests overtime
(i.e., RQs in Figure 6). Incoming tuples are kept in two sliding win-
dows (Wop,S1 andWop,S2 respectively) and the size of each sliding
window is 4 time units. In Figure 6 we display the operator’s actions
and the state of its sliding windows when the join operator reads:
(i) only ready tuples (i.e., diagram A in Figure 6) and (ii) both ready
and slack-ready tuples (i.e., diagram B in Figure 6).

Exploiting the notion of slack-ready tuples, relaxes the determin-
ism guarantees in order to meet the operator’s real-time criteria. In
Figure 6, diagram B, the operator reads the t1

2 tuple which is a slack-
ready tuple (i.e.,maxts −t1

2 = 9−5.5 = 3.5 > SLTop ) and it removes
t1
1 from theWop,S1 sliding window as it exceeds the amount of time

that it should be kept. In the fourth read request the operator reads
t2
2 which is a late-arrival and compares it only against t1

2 and not
t1
1 . However, t1

1 and t2
2 , should be also compared as they are within

the 4 time units sliding window (i.e., t2
2 .ts − t1

1 .ts = 3). These tuples
will never be compared due to the shift in the sliding window after
reading the t1

2 slack-ready tuple. Because we do not perform this
comparison we can miss an event that triggers the join predicate.
This illustrates that reading and processing slack-ready tuples pe-
nalizes the operator’s accuracy. In contrast, if the operator reads
only ready tuples, then t1

1 and t2
2 are compared but we impose extra

queuing delay to the tuples as we have to wait until t2
2 arrives before

the operator is able to read a ready tuple from the merged-stream
which can violate the operator’s real-time requirements.

The number of slack-ready tuples, slrTuplesop , that have been
read by the operator’s processing threads provide an insight of how
much the operator’s determinism guarantees have been relaxed.
More formally, assuming that we have an indication (e.g., a Boolean
variable) whether a tuple has been read by a thread as slack-ready,
we can compute slrTuplesop via the following Formula:

slrTuplesop =
∑

thr ∈PThreadsop
slrthr ,op, ∀op ∈ Operators (4)

where slrthr,op is the number of slack-ready tuples that have been
read by processing thread thr ∈ PThreadsop . The number of slack-
ready tuples read by a thread depend on the SLTop parameter as it
controls when a tuple should be read as slack-ready (i.e., see De�ni-
tion 3.1). Based on the amount of slrTuplesop read per operator we
can compute the number of slack-ready tuples read by the whole
application graph via the following Equation:

SLRTuples =
∑

op∈Operators

slrTuplesop (5)

This value should be kept as low as possible to avoid missing events
of interest and to guarantee the determinism of the processing.
A large SLTop can minimize SLRTuples but this can increase the
application’s Latency and cause deadline violations. So there is a
trade-o� between SLRTuples and Latency that needs to be consid-
ered when we tune SLTop ,∀op ∈ Operators . Our goal in this work
is to study the trade-o� between these two metrics by minimizing

Equation 5 and at the same time satisfying the end-to-end execu-
tion time requirements of the user expressed via Equation 3. More
formally, the problem can be de�ned as follows:
ProblemDe�nition. Given a stream processing application graph
comprising a set of Operators , determine SLTop ,∀op ∈ Operators
such that:

minimize SLRTuples =
∑

op∈Operators

slrTuplesop

subject to: Latency < Deadline

4 SOLUTION OUTLINE
In this section we provide an outline of our proposed solution for
maximizing the determinism under latency constraints. Our objec-
tive is to provide a system that meets the following requirements:

• The Latency demands of the distributed stream processing
application expressed in terms of a user-speci�ed dead-
line, are met, given that the scheduling of the operator’s
processing threads is not adversarial.

• The operators’ processing threads will read and process
only ready tuples as long as the stalling of tuples for guar-
anteeing the ready condition (cf. De�nition 2.1) does not
lead to violations of the deadline constraint.

• When the extra queuing delay for guaranteeing the tu-
ples’ deterministic processing leads to the violation of the
deadline constraint, then the system will sacri�ce its de-
terminism guarantees in order to satisfy this constraint.
In such cases we process the merged-stream’s out-of-order
tuples as they may contribute to the output results.

To meet the above requirements our approach makes the follow-
ing contributions:

• We propose a novel data structure, called SSG, which ex-
ploits the notion of slack-ready tuples and enables us to
relax the determinism guarantees in order to satisfy re-
sponse time requirements while handling late-arrivals and
ensuring no duplicate tuples.

• We propose a methodology and have developed system
components to dynamically and proactively tune the SLT
parameters of the SSG data structures in order to guarantee
that the Latency constraint is always satis�ed and the num-
ber of tuples that do not satisfy the strong determinism
guarantees (cf. De�nition 2.1) is minimized.

In the following sections we �rst describe the SSG API and then
provide a short description of our system components.

4.1 SSG API
A basic building block in our approach is a new API that merges
the operator’s input streams and enables the operator’s processing
threads to read and process slack-ready tuples. We propose a novel
data structure, SSG that has the following properties: (1) returns
a tuple as slack-ready when it has been stalled for more than the
SLT threshold (cf. De�nition 3.1), (2) handles late-arrivals that may
occur due to the determinism relaxation imposed by the slack-
ready notion, (3) no duplicate tuples are returned to each operator’s
processing thread and (4) enables the dynamic tuning of the SLT
parameter so that we can adjust it at real-time based on the current
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Figure 7: (a) System components and (b) SSG implementation details.

system conditions. To satisfy these properties, SSG supports the
following API:

• дetSSGTuple (readerId ): returns to the calling reader en-
tity readerId (e.g., an operator’s processing thread) the
next earliest ready or slack-ready tuple3 that has not been
yet consumed by the former. Each tuple is guaranteed to
be returned at most once to each readerId .

• insertSSGTuple (tuple,writerId ): inserts into SSG a tuple
from the writer entity writerId .

• setSLT (sltParameter ): sets the SLT parameter of SSG that
controls the amount of time that a tuple can be stalled in
the data structure.

There are two entities that can utilize SSG’s API, readers and writ-
ers. The latter are responsible to insert tuples in SSG while readers
retrieve tuples from the data structure. Writers in our system corre-
spond to the input sources (e.g., the bus and SCATS input streams in
the application example in Section 1) or upstream operators, while
readers are the operator’s processing threads.

The setSLT method can be used for tuning the SLT parameter,
as SLT enables us to control the amount of time that a tuple can
be stalled in the data structure. We should emphasize here, that,
for a �xed SLT value, the determinism level depends on the actual
execution and the di�erencemaxts −merдets that occurs while the
tuples arrive into the system, i.e. the di�erence between the most
recent tuples of the fastest and slowest streams respectively.

The e�ects of the relaxation of the determinism guarantees due
to the use of the SLT parameter on the дetSSGTuple method are
twofold: i) out-of-order tuples on the merged stream: ideally, дetSSG-
Tuple returns to each readerId ready tuples in timestamp order. Un-
der certain conditions, i.e. executions wheremaxts−merдets > SLT
occurs, tuples that have exceeded the SLT threshold are returned,
possibly out-of-timestamp order. E.g., assuming that we have two
input streams and one of the two streams is delyed in generating
tuples for longer than SLT , slack-ready tuples from the non-delayed
stream are returned, and tuples from the delayed stream may be
returned later, ii) missing tuples: There is no guarantee that all the
returned tuples will be used by the readerId because e.g., as we
mentioned in Section 3 when we process slack-ready tuples we
may move incorrectly the operator’s sliding window and thus some
late-arrivals will not contribute to the operator’s results.

3We use the terms read a tuple and return a tuple interchangeably.

The insertSSGTuple method aims at guaranteeing that tuples
will be available for reading/processing by all the reader entities.
Even when a reader has started reading slack-ready tuples, our goal
is to provide an insert method that will be able to provide tuples
from a delayed stream to the reader, as we argue that these tuples
may contribute on the operator’s results.

4.2 System Components Overview
Users in our system (i.e., shown in Figure 7) de�ne SSGOperators
components (i.e., stream processing operators that exploit the use
of the SSG data structure) only for those operators that have deter-
minism and real-time requirements. In addition, our system has an
external component called SLTuner for tuning the SLT parameters
used by the operators’ SSG. This is an inherently distributed system
where operators can be assigned to di�erent computing nodes.

Each SSGOperator uses: (a) a single SSG data structure for keep-
ing its incoming data, (b) PThreads that read and process data from
the SSG and are a multi-threaded implementation of the stream
processing operator (e.g., joins or aggregations), (c) a special mon-
itor thread (i.e., MThread in Figure 7) for gathering performance
statistics such as the slack threshold used by the SSG and the oper-
ator’s latency and (d) a SLTSetter thread which is used to adjust
the SSG’s SLT parameter. The processing threads are responsible to
forward generated tuples to the downstream operators’ SSGs. In or-
der to tune the SLT parameters of the SSGOperators , the SLTuner
exploits the three components we illustrate in Figure 7 as follows:

• The Estimator component estimates the latencyop and slr -
Tuplesop ,∀op ∈ Operators in upcoming time periods. This
component uses the previous reports for building two pre-
diction models for each SSGOperator.

• The Trigger component utilizes the outcomes of the Es-
timator to determine if the deadline is violated or if the
expected latency is signi�cantly smaller than the deadline.
The latter condition is used for increasing the SSG’s thresh-
old value when we expect low per tuple latency in the
upcoming time periods. If one of the two conditions is true
then the Optimization component is invoked.

• The Optimization component uses a greedy search algo-
rithm for solving the optimization problem we de�ned
in Section 3 and informs the SLTSetter threads about the
SLTs that the SSG data structures should utilize.
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1: Pr ior ityQueue[] pr ior ityQueues[#r eader Ids]
2: AtomicLonд SLT
3: AtomicLonд[] maxW riterT s[#writer Ids]
4: AtomicLonд[][] lastReadT s[#r eader Ids][#writer Ids]
5: // A ScaleGate implementation as in [8] with access to the getHead(readerId)

//method that returns the last tuple read by each r eader Id
6: ScaleGate SG

Algorithm 1: SSG data structure: main variables

1: nonOver takenReaders ← {}
2: for r eader Id ∈ lastReadT s do
3: l t ←max (lastReadT s[r eader Id])
4: //Check if the reader has overtaken the writer.
5: if (l t .ts > tuple .ts ) then
6: pr ior ityQueues[r eader Id].add (tuple )
7: else
8: nonOver takenReaders .add (r eader Id )
9: //Add tuple to ScaleGate only if some reader has not overtaken this writer.

10: if (!nonOver takenReaders .isEmpty ()) then
11: SG .addTuple (tuple, writer Id )
12: for all (r eader Id ∈ nonOver takenReaders ) do
13: //Get reader’s maximum read timestamp.
14: maxT s ←max (lastReadT s[r eader Id])
15: //Get reader’s last read tuple fromwriter Id .
16: l tw ← lastReadT s[r eader Id][writer Id]
17: //Add tuple to priority queue only if the reader has overtaken the writer and it

//has not already read this tuple.
18: if (maxT s > tuple .ts && tuple .ts > l tw .ts ) then
19: pr ior ityQueues[r eader Id].add (tuple )
20: nonOver takenReaders .r emove (r eader Id )
21: maxW riterT s[writer Id]← tuple .ts

Algorithm 2: insertSSGTuple (tuple,writerId )

5 SYSTEM IMPLEMENTATION
In the following sections we describe in more details the imple-
mentation of the SSG data structure and the three components that
comprise the SLTuner .

5.1 SSG’s Algorithmic Implementation
In Figure 7 we illustrate the basic components of our proposed SSG
data structure and how it is utilized by the writers and readers.
More speci�cally, SSG uses (a) a ScaleGate object for keeping tuples
in timestamp-sorted order, (b) an array of priority queues (one
queue per readerId) for keeping late-arrivals that occur after SSG
returns slack-ready tuples, and (c) some additional synchronization
variables (see Alg. 1) for handshaking between writers and readers
with the help of timestamps of already written and read tuples.

Combining ScaleGate with Priority Queues. SSG should be able
to return both ready and slack-ready tuples. ScaleGate by default
enables the access only to the next ready tuple for each readerId ,
which would not allow us to characterize a tuple as slack-ready.
Therefore, we modi�ed the ScaleGate data structure and allow it to
also include a method to return the next tuple with timestamp larger
than the timestamp of readerId ′s last read tuple, regardless if this
tuple is ready or not (i.e.,дetHead method in Figure 7). Furthermore,
when SSG returns slack-ready tuples, the determinism guarantees
are violated and late-arrivals can occur in the merged-stream; such
late-arrivals are stored in the priority queue of a reader that had
returned slack-ready tuples; this is needed since ScaleGate would
not be able to provide them to the readers, as the tuple returned
from the дetHead method would have a timestamp larger than the
timestamp of the late-arrival.

1: //Check if reader’s priority queue has elements.
2: if !pr ior ityQueue[r eader Id].isEmpty () then
3: t ← pr ior ityQueue[r eader Id].poll ()
4: lastReadT s[r eader Id][t .writer Id]← t .ts
5: //Characterize tuple as ready or slack-ready
6: merдeT s ←min (maxW riterT s )
7: if t .ts ≤ merдeT s then
8: t .isSlackReady ← f alse
9: else

10: t .isSlackReady ← true
11: return t
12: //Get the next tuple that should be read by r eader Id and check (slack)-ready

//conditions
13: t ← SG .дetHead (r eader Id )
14: if (t == NU LL) then
15: return NU LL
16: merдeT s ←min (maxW riterT s )
17: //Ready tuple condition.
18: if t .ts ≤ merдeT s then
19: t .isSlackReady ← f alse
20: //Update lastReadT s appropriately
21: lastReadT s[r eader Id][t .writer Id]← t .ts
22: return t
23: maxT s ←max (maxW riterT s )
24: //Slack-ready tuple condition.
25: if maxT s − t .ts > SLT then
26: t .isSlackReady ← true
27: lastReadT s[r eader Id][t .writer Id]← t .ts
28: return t
29: return NU LL

Algorithm 3: дetSSGTuple (readerId )

Inserting tuples. Our implementation of the insertSSGTuple me-
thod (i.e., Alg. 2) handles late-arrivals and guarantees that each
tuple is returned at most once to each reader, i.e. without duplicates.
More speci�cally, �rst we check if some reader has read a tuple with
timestamp larger than the tuple we are about to insert. If so we add
the new tuple in the reader’s priority queue. Otherwise we add the
tuple in the main ScaleGate component. Nevertheless, due to the
asynchrony of the system, there is still a possibility for the reader
to overtake the writer before the insertion of the tuple is �nished
and thus be missed. To limit the impact of such cases the insertion
mechanism checks again for the respective readers status (cf. lines
12 − 20 of Alg. 2). Alternatively, such tuples could be optimistically
added to the priority queues and burden the readers with checking
for duplicate tuples between the ScaleGate component and the
priority queues, thus guaranteeing that no tuples would be missed.
Our design choice is to keep the readers more lightweight, and
allow this behaviour while we tackle the non-determinism problem
in a higher level by regulating the SLT parameter.

The method introduces overhead of keeping extra information
for each reader, as we will have one priority queue for each reader.
Using one priority queue for all the readers would not work cor-
rectly as the last read tuple may di�er across the readers. Therefore,
some readers may actually read correctly the tuple while others
may have already read a tuple with larger timestamp. Furthermore,
because we keep in the queues only a reference to the actual tuple,
the memory overhead is rather small. In modern systems usually
memory usage is not the bottleneck thus it is a valid choice to keep
late-arrivals and mitigate the information loss.

Getting tuples. For the дetSSGTuple method (i.e., see Alg. 3) we
want to guarantee that the reader will be able to read tuples residing
in its priority queue (late-arrivals) and will exploit both the ready
and slack-ready tuples’ de�nitions. When a reader entity wants to
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retrieve a tuple from SSG the following steps are performed: (1) the
method checks if we have a tuple residing in the reader’s priority
queue and returns the �rst such tuple if so (lines 1 − 11 of Alg. 3),
(2) If the priority queue is empty then the method checks if the
next tuple to be read satis�es the ready tuple condition and returns
it if so (lines 12 − 22 of Alg. 3), (3) If the tuple is not ready, SSG
examines whether the slack-ready de�nition holds true and if so
it returns the tuple (cf. lines 23 − 28 of Alg. 3), and (4) if the tuple
is not slack-ready, SSG returns NULL (line 29 of Alg. 3) and the
reader entity will have to wait before it re-tries to read a tuple.

5.1.1 Analysis. The interface of SSG is, by design, aware of
tuples that have been delayed and thus execution-dependent, with
respect to how streams are delivered to the system. The properties
below describe the possible behavior of SSG during di�erent parts
of an execution.

First, we de�ne the properties of an ideal deterministic object
O that has an interface for receiving tuples from multiple streams
and gives an output stream as a result, which essentially models a
streaming operator, or a component of it. We assume one writer
thread for each input stream Si and one reader thread that produces
the output stream R, using the same identi�ers for threads and
streams. In the settings of the common shared memory model [10],
we consider a history H of an object as a sequence of invocations
and responses of its methods. We call sub-history a continuous (i.e.,
not skipping any method invocation or response) sub-sequence
of H . We call thread sub-history H |Si the projection of H that in-
cludes only methods executed from Si . In the following, given the
streaming setting of the problem, we assume in�nite histories. Each
tuple t received from an input stream Si , for O corresponds to
an invocation and response of the respective insert method (e.g.,
in the SSG object this would be the insertSSGTuple (t , Si ) method
call). Respectively, a tuple t of the output stream R, is the return-
ing result from a response of the appropriate method call (e.g., the
дetSSGTuple (R) method for SSG).

De�nition 5.1. Let two histories H and H ′. O will have the same
input streams (as in the same sequences of tuples per stream) in H
and H ′, if ∀i the thread sub-history H |Si is equivalent to H ′ |Si .

Note, that if H and H ′ have the same input streams, the way
that any two projections H |Si and H |Sj interleave within H , might
be arbitrarily di�erent from the way the respective projections
interleave within H ′. Thus, we can reformulate the notion of a
deterministic stream operator for O (cf. Sec. 2.2) as follows:

De�nition 5.2. O is deterministic if for any two histories H and
H ′ with the same input streams, then the non-null responses of
H |R are equal and in the same order to the non-null responses of
H ′ |R (i.e. the same output stream).

We further say that an object is in a steady state, if for all possible
future sub-histories that have the same input streams, it is deter-
ministic. Essentially, a deterministic object O is always in a steady
state. For example, if two histories with the same input streams
were "frozen" to a point where the same input tuples have been
received, one could exchange the object O instances and maintain
the determinism property for the rest of the histories.

We will now argue that SSG will be deterministic for sub-histories
where the SLT threshold is not violated. We call a sub-history

SLT -compatible if during the sub-history the condition maxts −
merдets ≤ SLT holds, and respectively SLT -incompatible if the
condition is violated within the sub-history.

Property 1. SSG will not return slack-ready tuples during an
SLT -compatible history.

Proof Sketch. Tuples will be returned as slack-ready only if
they have been stalled (while t .ts > merдe .ts holds and they have
not been returned as ready) for more than SLT time. But this can
only happen if merдe .ts di�ers from maxts more than SLT , i.e.
within an SL-incompatible history. �

We can observe that if an entire history H is SLT -compatible,
then SSG behaves deterministically, as it returns only ready tuples
as ScaleGate [8]. However, describing what happens in a history
that consists of both SLT -compatible and SLT -incompatible sub-
histories is not straightforward.

Consider that SSG may return tuples out of timestamp order
when they are returned from a priorityQueue (cf. lines 2 − 11 in
Alg. 3). From Algorithm 2 we see that a tuple is added in the priority
queue of some reader only if that reader has already read a tuple
with higher timestamp. A reader will respectively read a tuple t
with t .ts > merдets only if it is slack-ready at that point in the
history execution. Thus, we can see that the following holds:

Property 2. If a tuple t is added to the priorityQueue of a reader,
then there exists another tuple t ′ that has been previously returned as
slack-ready to the same reader.

Assuming that within a history H all SLT -incompatible sub-
histories are of �nite length, we can show:

Theorem 5.3. For a long enough SLT -compatible sub-history, i)
SSG will reach a steady state in a �nite amount of time, and ii) SSG
will remain in steady state for the remaining sub-history.

Proof. Let h be an SLT -compatible sub-history of a history H .
By Property 1, no slack-ready tuple will be returned within h. Given
that previous SLT -incompatible sub-histories of H are of �nite
length and by Property 2, in a �nite amount of time proportional to
the size of the priorityQueues , the latter will become empty. This
is a steady state for the object, since no out-of-order and no slack-
ready tuples will be returned. Finally, because h is SLT -compatible,
the object will remain in steady state during h. �

Theorem 5.3 shows that not only SSG behaves well in SLT -
compatible histories, but, even after incompatible sub-histories,
deterministic behavior can be achieved again given enough time.

The following property characterizes the tuples returned from a
priorityQueue .

Property 3. Tuples returned from priorityQueues are at least
slack-ready.

Proof Sketch. By Property 2, a tuple t is inserted into a prio-
rityQueue if another tuple t ′ with t ′.ts > t .ts has been returned as
slack-ready, i.e.maxTs−t ′.ts > SLT . Thus,maxTs−t .ts > SLT . �

On top of Property 3, Alg. 3 checks if a tuple has become ready
before outputting it, further increasing the monitoring accuracy.
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5.2 SLTuner’s Components
In this section we provide the implementation details of the three
components (i.e., Estimator, Trigger and Optimization) that are uti-
lized by the SLTuner in order to tune SLTop ,∀op ∈ Operators .

5.2.1 Estimator Component. The Estimator component captures
the impact of SLT parameter in the operator’s latency (i.e., see Equa-
tion 1) and the amount of slack-ready tuples (i.e., see Equation 4)
that the operator will read. The Estimator creates two di�erent pre-
diction models for each operator, the �rst for estimating its latency
(i.e., latencyop ) and the second for estimating the number of slack-
ready tuples (i.e., slrTuplesop ). Then it applies Equations 2 and 5 to
estimate the total end-to-end execution time (i.e., Latency) and the
total number of slack-ready tuples in the system (i.e., SLRTuples).
For our prediction models we use the following features vector:

~xop = (SLTop, hourop,minop, secop, |Pthreadsop |, SWop ),

∀op ∈ Operators (6)

where hourop ,minop and secop correspond respectively to the hour,
minutes and seconds of the last tuple that has been processed by
operator op. We added these feature to detect periodic patterns in
the input stream similarly to [24]. Furthermore, we use the SWop as
a feature because the size of operator’s sliding window will a�ect
the operator’s processing latency.

We decided to use a well-known technique,Gaussian Processes [18],
that has been e�ciently applied in similar context [24]. Gaussian
process is a non-linear non parametric model and is an extension
of the multivariate Gaussian distribution for in�nite collection of
real-valued variables. In order to estimate the two metrics we used
the following Gaussian distributions:

latencyop (~xop ) ∼ N (f̄ (~xop ), var1 (~xop )), ∀op ∈ Operators (7)

slrTuplesop (~xop ) ∼ N (д̄ (~xop ), var2 (~xop )), ∀op ∈ Operators (8)

where f̄ (~xop ) and д̄(~xop ) will be the mean of the Gaussian distri-
butions while var1 (~xop ) and var2 (~xop ) will be the corresponding
variance or uncertainty of the estimations. These functions are
computed using historical data and then the system uses Equa-
tions 7 and 8 for estimating the two metrics of interest. In most
cases Gaussian Processes require more time for the training phase
than simpler techniques like Linear Regression. However, when the
model is trained once as in our case, the training overhead can be
tolerated as it will help the system to capture the SLT parameter’s
impact more accurately. It should be clear that the user can easily
plug-in di�erent prediction techniques in our system.

5.2.2 Trigger Component. For determining when the optimiza-
tion algorithm that tunes the slack threshold should be triggered
we decided to examine the applicability of a commonly used sched-
uling metric, laxity [23], that depicts how close the estimated execu-
tion time is to the user-de�ned deadline. More formally, Laxity =
Deadline − Latency where Latency is the estimated end-to-end
execution time. The smaller the Laxity value is, the higher will
be the probability of a deadline miss. Therefore, the optimization
algorithm is triggered when the following condition is true:

Laxity ≤ 0 (9)

We also need to accommodate cases when Laxity has a large value
and the operator’s latency is very small, and thus it may be possible

to increase the SLTop to minimize the amount of slack-ready tuples
that will be processed. For this reason we also run the optimization
algorithm when the following condition is true:

Laxity ≥ α × Deadline (10)

where α ∈ (0, 1) is a user-de�ned parameter that determines when
the Laxity metric has a large value. The greater the α parameter
is the lower should be the application’s Latency in order to trigger
the algorithm, as it will be harder to satisfy Equation 10.

5.2.3 Optimization Component. In order to solve our optimiza-
tion problem we applied a greedy Hill climbing algorithm that
enables us to tune the slack threshold parameters fast and e�-
ciently. First, we set the SLT parameters to some initial values and
then gradually increase their values, estimating at each step the
corresponding latency and the total number of slack-ready tuples
that will be processed. In each step we increase the SLTop that leads
to the minimization of the slack-ready tuples metric and at the same
time satis�es the deadline constraint. We stop the search if we fail
to �nd a valid increase and return the currently found parameters.
The performance of the algorithm depends on the SLTs and the step
sizes we use for increasing them. When we apply the algorithm due
to Equation 9, the search should start with small initial SLT values
in order to quickly satisfy the deadline constraint. Then, by grad-
ually increasing the slack thresholds we will be able to minimize
the amount of slack-ready tuples that we will read. In case that the
algorithm is triggered due to Equation 10 we start the search with
the current SLTs as these parameters satisfy the deadline constraint.
Finally, we decided to invoke this greedy algorithm and avoid more
elaborate techniques like [22] in order to detect fast the appropriate
slack thresholds as we examine the problem in streaming context.

6 EVALUATION
Setup. We evaluated our approach using a streaming smart city ap-
plication running in Dublin city. The app receives data from sensors
mounted on top of public buses4 which report how delayed is a bus
from reaching the next bus stop. It also receives data from SCATS
sensors5 that measure the tra�c �ow in road intersections. We have
911 buses and each bus sends a new report every 20 seconds, while
we have 3, 504 SCATS sensors and each SCATS sends a new report
every minute. We increased the rate with which reports are emitted
by the sensors, to stretch our system’s performance. The goal of the
app is to detect areas that are experiencing high tra�c congestion.
First we split Dublin city into sub-areas and then for each area we
monitor reports from both input sources in a sliding window of 5
seconds (i.e., SWp = 5, 000) and trigger a congestion event when a
bus reports a congestion event and in the same area a SCATS sensor
has reported a tra�c �ow larger than a speci�ed value. Our exper-
iments run on a server equipped with Intel(R) Core(TM) i7-3770
3.40GHz CPU and 16 GB RAM.
Comparison against ScaleGate and K-slack. In the �rst set of
experiments we compare SSG against the ScaleGate and K-slack
data structures in terms of the overhead that is added due to the use
of extra synchronization parameters as we described in Section 5.1.

4https://data.dublinked.ie/dataset/dublin-bus-gps-sample-data-from-dublin-city-c
ouncil-insight-project
5https://data.dublinked.ie/dataset/scats-dcc-jan2013
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Algorithm NRMSE1 (%) NRMSE2 (%) Time (sec)
Gaussian Processes 10 25 2

Linear Regression 20 26 0.06
Isotonic Regression 19 26 0.2

SVM 15 25 4
Table 1: Evaluation of di�erent prediction algorithms.

We decided to compare our data structure against K-slack as it was
utilized by all previous works that studied the determinism problem
under latency constraints [16, 17].

In order to be able to capture the overhead of the synchroniza-
tion on the reading time, we considered a benchmark that readers
only retrieve tuples from the data structure and do not perform any
processing. We used two writers and each one generated 20, 000
tuples. As it can be observed in Figure 8, ScaleGate has lower aver-
age reading time than SSG due to the fact that the latter adds extra
synchronization overhead due to the extra AtomicLonд variables
that are used for keeping the maximum tuples’ timestamps that
have been returned to the readers. However, even when 8 threads
are executing concurrently the overhead is minimal as the average
reading time is less than 0.002 ms. Furthermore, SSG is able to
support signi�cantly lower reading time than K-slack due to the
fact that SSG is a lock-free approach in contrast to K-slack that uses
locks for synchronizing the readers and writers.

Scalability. In the second set of experiments we evaluated the
scalability of SSG when it is utilized on top of Apache Storm which
is one of the most well-known distributed stream processing sys-
tems. Furthermore, we wanted to illustrate that the synchronization
overhead for guaranteeing the deterministic processing is negligi-
ble and thus SSG can achieve nearly linear scalability when more
processing nodes are used. We run our tra�c join application on
our local 8 nodes cluster where each node is equipped with 8 CPU
and 16 GB RAM. We run the experiments for 400 seconds and each
writer emitted 1, 000 tuples per second. As it can be observed in
Figures 9 and 10, we varied the number of nodes and measured the
performance of the application in terms of processed tuples and
comparisons that are performed by the operators. There is an almost
linear increase of the processed tuples and performed comparisons
when we increase the number of join operators that execute con-
currently in the Storm application. Therefore, this points out that
SSG is able to exploit the parallelism o�ered by Storm without pe-
nalizing the application’s performance due to the synchronization
required for guaranteeing the determinism of the processing.
Prediction Model Evaluation. We evaluated the applicability of
Gaussian Processes used by the Estimator component for predicting
the latency and the amount of slack-ready tuples read by the join

operator when we use varying slack threshold parameter. We run
the application for di�erent slack threshold parameters and kept
the latency and the amount of slack-ready tuples as historical data.
We used these historical data for building the prediction models.
We compared Gaussian Processes against three commonly used
approaches, Linear Regression, Isotonic regression and Support Vector
Machines (SVM). In Table 1 we illustrate the performance of the
four di�erent techniques. We evaluated the algorithms using 50% of
the historical data for training the models (i.e., approximately 923
samples) and used the other 50% as test data were we computed the
normalized mean squared error (NRMSE). NMRSE1 corresponds
to estimation error of the latency metric while NMSRE2 refers to
the error when estimating the number of slack-ready tuples. As it is
shown in Table 1, Gaussian Processes is a very powerful technique
that is capable of capturing the features of the training examples
and minimizes the NRMSE. However, Gaussian processes lead to
high execution time (i.e., 2 seconds). We argue that the overhead is
negligible as the training is performed only once.
SLTuner Evaluation. We compared the performance of our pro-
posed slack threshold adaptation technique, SLTuner , against other
commonly applied techniques in similar settings. Speci�cally, we ex-
amined the following approaches: (1) Static Low which uses a �xed
low slack threshold throughout the experiments, (2) Static High
which uses a �xed high slack threshold, (3) Max Timestamp [16]
which adjusts dynamically the K parameter in the K-Slack data
structure and was applied in our system by setting the K parameter
equal to the maximum observed delay in the incoming tuples and
(4) TCP Adaptation [17] which uses a TCP-like adaptation algo-
rithm that decreases by half the K parameter of K-slack when we
observe an increase in the latency, while it increases K by a �xed
amount (i.e., 1000ms) when latency has decreased.

In these experiments both the bus and the SCATS input sources
emitted 500 reports per second. In order to compare our approach
against these alternative techniques, we delayed the bus input
source to increase the queuing delay and thus pinpoint the need of
relaxing the determinism guarantees. We considered two di�erent
delaying policies, one that leads to periodic delays of the bus input
source, and another that has a constant increase in the delay of
the tuples fed by the bus input source and thus depicts an extreme
scenario. In Figures 1 and 11 we illustrate the tuples’ timestamps
that have been inserted by the two input sources in SSG as a func-
tion of time. As seen in Figure 1 (see Section 1), we have periods
with increased delay di�erence and this can violate the deadline
constraint, but also we have periods where the two sources report
similar timestamps so in such periods we could use a larger SLT
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Figure 12: Comparison of di�erent SLT tuning techniques when bus input source is delayed using a Zipf distribution (For
results’ clarity we added label only on the �rst �gure).
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Figure 13: Comparison of di�erent SLT tuning techniques when bus input source is constantly delayed (For results’ clarity we
added label only on the �rst �gure).

parameter to minimize the number of slack-ready tuples that will
be processed. In contrast, in Figure 11 it can be observed that the
di�erence between the reported timestamps constantly increases
therefore we have to sacri�ce determinism guarantees in order to
satisfy the deadline constraint.

In the �rst delay policy we used a Zipf distribution to delay tuples
arriving from the bus input source. More speci�cally, for 20 seconds
we delayed the tuples using 1.0 as the exponent with the maximum
delay being 10 ms while for the next 50 seconds the Zipf exponent
was 0.35 and the maximum delay 2 ms and repeated this delaying
pattern throughout the application’s execution. The application’s
deadline was set to 6, 000 ms. In Figures 12(a), 12(b) we illustrate the
operator’s latency and the SLT parameters that were used through-
out the experiments. Furthermore, in Figures 12(c), 12(d) we depict
the number of slack-ready tuples and the detected events. SLTuner
is able to e�ciently satisfy the deadline constraint and at the same
time minimizes the amount of slack-ready tuples. In contrast, the
Static Low approach while it minimizes the latency, it also leads
to an increased amount of slack-ready tuples that can impact the
detected events due to the shift in the operator’s sliding window.
On the other hand the Static High technique does not have slack-
ready tuples and detects all the events but at the cost of signi�cant
increase in the latency that causes deadline violations during the
periods of high delay. The TCP Adaptation technique is a re-active
technique and thus it adjusts the SLT parameter after the deadline
has been violated. Nevertheless, it is able to process less slack-ready
tuples and thus minimize the number of undetected events. Finally,
the Max Timestamp approach does not process slack-ready tuples
as it uses the largest possible time di�erence as the slack threshold
parameter; however, this violates the deadline constraint.

In the second delay policy each tuple coming from the bus input
source was delayed for 1 ms before it was inserted to the SSG data
structure. The deadline in this application was set to 35, 000 ms. As

it can be observed in this case is not easy to satisfy the deadline (i.e.,
Figure 13(a)) without increasing signi�cantly the number of slack-
ready tuples that will be processed (i.e., Figure 13(c)). Furthermore,
because the delay between the input sources constantly increases
becoming signi�cantly larger than the operator’s 5 seconds sliding
window, late-arrivals will not contribute on the operator’s results
as the sliding window will shift due to the reading of slack-ready
tuples and thus no events will be detected (i.e., Figure 13(d)).

SLTuner is able to detect the exact moment that the delay in the
input sources will penalize the application’s deadline (i.e., at approx-
imately 75 seconds) and determines to decrease the SLT parameter
to 50, 000 (see Figure 13(b)). In contrast, the Static High technique is
able to process only ready tuples but it violates the deadline require-
ment. Static Low always satis�es the deadline constraint but even in
the �rst 100 seconds where the constraint would not be violated if
we use a large SLT parameter; Static Low approach processes a large
number of slack-ready tuples and thus misses more events than the
SLTuner technique as we illustrate in Figure 13(d). Furthermore,
our approach outperforms the other two adaptation techniques as
it is able to perform �ne-grained tuning of the SLT parameter and
also it exploits a pro-active mechanism thus it can detect when the
deadline will be violated before the violation actually occurs.

7 RELATEDWORK
One of the �rst approaches proposed for the determinism problem
in stream processing systems is punctuation based techniques [15].
The basic idea is to use special tuples in the event streams called
punctuations to indicate that no future tuples will arrive in the
stream with timestamp less than the punctuation’s timestamp. Most
of the existing works assume that punctuations are provided by
some external source or can be generated a priori using historical
data. However, this is not realistic in many real-world applications.
For this reason an adaptive technique [20] has been proposed that
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aims to capture the skew between the streams and automatically
generate the appropriate punctuations. In order to add this punctu-
ation we have to wait for all the late arrivals, so the problem ends
up having this trade-o� between latency and results’ accuracy.

The second commonly applied technique is using a bu�er-based
data structure to keep incoming tuples for a time period before
processing them. The idea is to keep the data as long as possible to
avoid determinism violations. Aurora [1], one of the �rst stream
processing systems, enables the user to set a �xed bu�er size. Tech-
niques like [16] propose the dynamic adaptation of the bu�er size
in order to avoid out-of-order tuples but without examining the
implications in the latency. Works like [12, 13] take into account
the latency and adjust the bu�er size dynamically in order to min-
imize it but are operator speci�c (i.e., in [12] they focus on joins
while in [13] they examine the problem for aggregations) so they
do not provide a generic approach like ours which would work with
any operator type. Furthermore, both techniques are reactive while
we provide a proactive adaptation enabling us to avoid possible
deadline violations before they actually occur.

The third approach for solving similar problems is using specu-
lative techniques [19]. The main idea of such works is to process
tuples without any delay and recompute the results in case of out-of-
order tuples. However, in many real world applications out-of-order
tuples is a common phenomenon so the recomputation cost may
a�ect signi�cantly the system’s performance. In [17], the authors
combined speculation and bu�er based techniques by using a K-
slack bu�er with varying size (i.e., exploiting the TCP adaptation
technique described in Section 6) and applying speculation when
out-of-order tuples occurred. While this proposal minimizes the
operator’s latency it may a�ect its results’ accuracy. Finally, the
fourth approach for solving this problem is to apply approximation
based techniques like [14]. These techniques exploit special data
structures (e.g., histograms) to summarize the incoming data and
provide results as soon as possible [19].

8 CONCLUSIONS
In this work we have studied the problem of deterministic stream
processing under latency constraints. We have advanced state-of-
the-art in several ways: (a) We provide a novel data structure, SSG,
which enables us to trade-o� latency for accuracy, (b) We proposed
a novel proactive technique for automatically adjusting the slack
threshold parameter of SSG in upcoming time windows enabling
us to avoid deadline violations and at the same time minimizing
the amount of slack-ready tuples. Our approach exploits the use of
Gaussian Processes for estimating the impact of the slack threshold
parameter on the latency and the amount of slack-ready tuples. We
use these estimations to determine when deadline violations will
occur and solve a single-objective optimization problem in order
to minimize the amount of slack-ready tuples and satisfy deadline
constraints. Our experimental results indicate a clear improvement
in the system’s performance when our approach is used, outper-
forming current state-of-the-art techniques.
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