
GeneaLog: Fine-Grained Data Streaming Provenance at the Edge
Dimitris Palyvos-Giannas

Chalmers University of Technology

Gothenburg, Sweden

palyvos@chalmers.se

Vincenzo Gulisano

Chalmers University of Technology

Gothenburg, Sweden

vinmas@chalmers.se

Marina Papatriantafilou

Chalmers University of Technology

Gothenburg, Sweden

ptrianta@chalmers.se

ABSTRACT
Fine-grained data provenance in data streaming allows linking each

result tuple back to the source data that contributed to it, some-

thing beneficial for many applications (e.g., to find the conditions

triggering a security- or safety-related alert). Further, when data

transmission or storage has to be minimized, as in edge computing

and cyber-physical systems, it can help in identifying the source

data to be prioritized.

The memory and processing costs of fine-grained data prove-

nance, possibly afforded by high-end servers, can be prohibitive for

the resource-constrained devices deployed in edge computing and

cyber-physical systems. Motivated by this challenge, we present

GeneaLog, a novel fine-grained data provenance technique for data

streaming applications. Leveraging the logical dependencies of the

data, GeneaLog takes advantage of cross-layer properties of the

software stack and incurs a minimal, constant size per-tuple over-

head. Furthermore, it allows for a modular and efficient algorithmic

implementation using only standard data streaming operators. This

is particularly useful for distributed streaming applications since

the provenance processing can be executed at separate nodes, or-

thogonal to the data processing. We evaluate an implementation of

GeneaLog using vehicular and smart grid applications, confirming

it efficiently captures fine-grained provenance data with minimal

overhead.

CCS CONCEPTS
• Information systems → Data provenance; Online analyti-
cal processing engines;

KEYWORDS
Fine-grained data provenance, Edge architectures, Data streaming

ACM Reference Format:
Dimitris Palyvos-Giannas, Vincenzo Gulisano, and Marina Papatriantafilou.

2018. GeneaLog: Fine-Grained Data Streaming Provenance at the Edge.

In 19th International Middleware Conference (Middleware ’18), December
10–14, 2018, Rennes, France. ACM, New York, NY, USA, 12 pages. https:

//doi.org/10.1145/3274808.3274826

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Middleware ’18, December 10–14, 2018, Rennes, France
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5702-9/18/12. . . $15.00

https://doi.org/10.1145/3274808.3274826

1 INTRODUCTION
Data streaming is a winning paradigm for applications that need

to process data through continuous queries, at appropriate levels

of edge, fog and cloud architectures in digitalized systems. Besides

possibilities for low latency, another critical purpose of stream pro-

cessing is to distill information into events, reducing the amount of

data to be maintained.When the events produced by a streaming ap-

plication refer to unusual or critical situations, it is then desirable to

keep the source data to trace, understand and deal with the cause of

the problems, to replay the query or to develop learning structures

for future situations and related purposes [3, 14]. This is enabled by

fine-grained data provenance, which allows linking back each output
(e.g., an alert in the presence of an accident [5]) with the source data

that leads to it (e.g., the position reports of the cars involved). As

also discussed in [16], this is essential for industry 4.0, smart cities,

vehicular networks, and other cyber-physical systems’ applications.

In the remainder of the text, we use the terms fine-grained data

provenance or simply data provenance interchangeably.

In state-of-the-art solutions, data provenance is achieved through

operator instrumentation that enriches the tuples with provenance

meta-data annotations [16]. These variable-length annotations are

then used to trace back the source tuples contributing to each output

event. For this to work, all source data must be stored temporarily,

later discarding those tuples that did not contribute to an output

event. Although several optimizations have been discussed for such

an approach (e.g., provenance compression), the disadvantages of

variable-length annotation-based techniques can become problem-

atic and introduce prohibitive storage overheads for applications

maintaining large states [36].

Challenges. Fine-grained data provenance is an intrinsically heavy

operation that bounds the performance of a given application to the

efficiency with which the data provenance information of the latter

is maintained. Our goal is to minimize the provenance overhead,

both for time-performance aspects (e.g., throughput and latency) as

well as for memory requirements (e.g., temporal storage). This is all

the more important in edge computing, due to the limited resources

of the employed devices, e.g., when the dozens of gigabytes of

data sensed every day by a modern vehicle [10] cannot be stored

(or transmitted to a dedicated storage unit) until each piece of

information is distinguished into contributing or non-contributing

to an event.

Contribution. We propose GeneaLog, a new technique and frame-

work for data provenance in deterministic streaming applications.

GeneaLog provides several major novelties:

• It relies on small, fixed-size annotations that work for all

standard data streaming operators, reducing the per-tuple

memory overhead incurred for provenance.

https://doi.org/10.1145/3274808.3274826
https://doi.org/10.1145/3274808.3274826
https://doi.org/10.1145/3274808.3274826
https://www.acm.org/publications/policies/artifact-review-badging/#functional

Middleware ’18, December 10–14, 2018, Rennes, France D. Palyvos-Giannas et al.

• It leverages the memorymanagement of the process to distin-

guish source tuples that contribute to the application output

from the ones that do not, without requiring temporary stor-

age of all source data.

• It further allows for a modular and efficient algorithmic im-

plementation using only standard data streaming operators.

This is particularly useful for distributed streaming applica-

tions since the provenance processing can be (i) executed at

separate independent nodes, orthogonally to the data pro-

cessing, and (ii) parallelized using existing techniques avail-

able for standard streaming operators.

We show the correctness of GeneaLog and evaluate it in a chal-

lenging context, namely an edge-processing environment, with

applications for monitoring of unusual or critical situations such as

accidents and anomalies, with a variety of data rates and operators

in their queries.

We provide a fully implemented prototype of GeneaLog on top

of the Liebre Stream Processing Engine (SPE): a lightweight SPE

for edge-computing [27]. As we show in our evaluation, GeneaLog

overcomes state-of-the-art techniques making fine-grained data

provenance a reality for streaming application in edge computing

and cyber-physical systems.

The rest of the paper is organized as follows. We introduce

preliminary concepts in § 2. We provide a formal problem definition

in § 3 and present GeneaLog’s approach in § 4-6, evaluating it in

§ 7. We discuss related work in § 8 and conclude in § 9.

2 PRELIMINARIES
Streams and operators are the basic building blocks of a data stream-

ing continuous query. A stream is an unbounded sequence of tuples

sharing the same schema composed by attributes ⟨ts,a1, . . . ,an⟩
(we refer to attributes ts and ai of tuple t as t .ts and t .ai , respec-
tively). Attribute t .ts represents the time at which the tuple has

been created. In a query, source tuples are delivered by Sources, ana-
lyzed by a Directed Acyclic Graph (DAG) of operators which can

also produce new tuples (as described later in this section) and,

eventually, delivered as sink tuples to Sinks.
When the tuples of each source stream are fed to the opera-

tors of a query in timestamp order (either because Sources deliver

timestamp-sorted streams as in [6, 18, 26] or by leveraging sorting

techniques such as [25]) and each operator produces timestamp-

sorted output streams (merging in timestamp order its input tuples

if the latter are delivered by multiple input streams, as discussed

in [18–20, 35]) a query’s execution is deterministic. In a nutshell,

this is given by the fact that each processing step depends on the

notion of time carried by the tuples themselves (attribute ts) and is

affected neither by the latency incurred in transmitting tuples from

an operator to another operator nor by the interleaving of tuples

to an operator with multiple input streams. For the edge-related

monitoring applications motivating our work (§ 1), determinism

is crucial to identify the source data contributing to each output

event unambiguously. For this reason, we assume in the follow-

ing that the queries for which data provenance is provided run

deterministically. We refer to [18–20] for a detailed discussion on

determinism.

Queries are run by being deployed at one or multiple SPE in-
stances. Existing SPEs use different naming conventions for such

instances (e.g.,Worker for Apache Storm [32] and Task Manager for
Apache Flink [8]). Nonetheless, each SPE instance represents a sin-

gle process in which threads share memory but maintain the tuples

being processed in thread-local data structures, using queues to

communicate with other threads. As typical in modern applications,

we assume that the memory allocated to objects maintained by each

process is freed when such objects are no longer accessible (directly

or indirectly) by the processes’ threads (either by garbage collection

techniques or other memory reclamation techniques such as hazard

pointers [28, 33]). When a query is run by multiple SPE instances,

the latter can be located at the same physical node or distinct ones.

The standard operators provided by SPEs can be distinguished

into stateless and stateful. Stateless operators process input tuples

on a one-by-one basis. The standard stateless operators provided by

SPEs such as [8, 16, 18, 32] are:

Map which produces one or more output tuples for each input

tuple by selecting one or more of the input tuples’ attributes,

optionally applying functions to them.

Filter which is used to decide whether a certain tuple should be

forwarded or discarded based on a condition.

Multiplex which copies input tuples to multiple out streams.

Union which merges multiple input streams into a single output

stream. Since we assume operators enforce determinism, the

Union operator merges timestamp-sorted input streams into

a timestamp-sorted output stream, as discussed in [18, 20].

Differently from stateless operators, stateful operators output tu-

ples that depend on multiple input tuples. The standard stateful
operators provided by SPEs such as [8, 16, 18, 32] are:

Aggregate which maintains a sliding time-based window of size

WS and advance WA of the most recent input tuples and

aggregates them (e.g., with functions such as max, min or

sum) possibly defining one ormore group-by attributes (from

the input tuples’ schema) to aggregate together only tuples

sharing the same value for these attributes.

Join which defines one left input stream (L) and one right input

stream (R), and produces an output tuple combining and/or

altering the attributes of tuples tL ∈ L and tR ∈ R for each

pair of tuples ⟨tL , tR ⟩ satisfying a given predicate while not

being far apart more than a given window size WS (i.e.,

|tL .ts − tR .ts | ≤ WS).

It should be noted that once deployed at one or more SPE in-

stances, these operators are not necessarily mapped to dedicated

threads. E.g., when a query defines three consecutive Filter opera-

tors, their conditions can be checked at the same time by a single

thread chaining the operators, as done by [8], rather than by three

dedicated threads whose per-tuple communication costs could be

higher than the processing ones. Similarly, the semantics of differ-

ent operators could be combined, for instance defining a routing

operator that forwards input tuples to one or more output streams

based on a set of conditions (i.e., by combining a Multiplex and sev-

eral Filter operators). We clarify this to highlight that, by discussing

the standard operators provided by an SPE rather than ad-hoc ones,

our contribution holds even when the semantics of such standard

operators are combined.

GeneaLog: Fine-Grained Data Streaming Provenance at the Edge Middleware ’18, December 10–14, 2018, Rennes, France

S

F

A

F

K

Filter
speed==0

Aggregate
count(),distinct(pos)
WS=120 sec, WA=30 sec
group-by=car_id

Filter
count==4 AND dist_pos==1

Source

Sink

08:00:01 a 0 X

08:00:31 a 0 X
08:00:02 b 55 Y

08:00:32 c 0 Z
08:01:01 a 0 X
08:01:31 a 0 X

ts car_id speedpos

08:00:00 a 4 1
ts car_id count dist_pos

ts car_id count dist_pos
08:00:00 a 4 1
08:00:00 c 1 1

08:00:01 a 0 X
08:00:31 a 0 X
08:00:32 c 0 Z
08:01:01 a 0 X
08:01:31 a 0 X

ts car_id speedpos

Figure 1: Sample continuous query.

In the remainder, together with stateless and stateful operators,

we assume that queries can include one or more:

Source creating the source tuples fed to the query.

Sink receiving the sink tuples produced by the query.

Send and Receive operators, which can be used to transmit and

receive tuples between two distinct processes (potentially

deployed at distinct nodes).

Figure 1 presents a sample query that detects broken-down cars

on highways (based on the Linear Road benchmark [5], further

discussed in § 7). The source tuples are position reports, emitted

by each car every 30 seconds, carrying information about its speed

and position. A car is considered stopped if at least four consecutive

position reports report zero speed and the same position. Three op-

erators compose the query. First, a Filter forwards only the position

reports that have zero speed. Subsequently, an Aggregate operator

aggregates the position reports of each car individually over a time

window of size and advance of 120 and 30 seconds, respectively. If

four tuples in a window have the same position, the output tuple

produced by the Aggregate is forwarded by a Filter.

3 PROBLEM DEFINITION
We first define the contributes-relation between source and sink

tuples, setting the basis of fine-grained data provenance.

Definition 3.1. We say that input tuple tIN to an operator OP
contributes to an output tuple tOUT of OP , if:

i OP is a Filter, Union or Receive and tOUT = tIN
ii OP is a Map, Send or a Multiplex and tOUT is created upon

the processing of tIN
1

iii OP is an Aggregate and if tIN is in the window of tuples

whose aggregation results in the creation of tOUT
iv OP is a Join and tIN is one of the tuples in a pair of tuples

within time distanceWS for which the Join predicate holds.

This relation is transitive and hence generalized in the context of

a query as follows: a tuple tSOURCE of a source stream contributes
to a tuple tSINK of a sink stream, if in the DAG of operators in the

query there is a directed path of topologically-sorted operators

1
The difference between type (i) and type (ii) operators in this context is that the

former forward tuples, while the latter create new ones (even if sometimes they are

identical).

S

F

A

F

K

Filter
speed==0

Aggregate
count(),distinct(pos)
WS=120 sec, WA=30 sec
group-by=car_id

Filter
count==4 AND dist_pos==1

Source

Sink

08:00:01 a 0 X

08:00:31 a 0 X
08:00:02 b 55 Y

08:00:32 c 0 Z
08:01:01 a 0 X
08:01:31 a 0 X

ts car_id speedpos

08:00:00 a 4 1
ts car_id count dist_pos

ts car_id count dist_pos
08:00:00 a 4 1
08:00:00 c 1 1

08:00:01 a 0 X
08:00:31 a 0 X
08:00:32 c 0 Z
08:01:01 a 0 X
08:01:31 a 0 X

ts car_id speedpos

Figure 2: Sample query from Figure 1 with additional red
arrows showing the contribution graph of the sink tuple.

OP1, . . . ,OPi , . . . ,OPk , starting with a Source and ending with a

Sink, and a sequence of tuples t0 = tSOURCE, . . . , ti−1, ti , . . . , tk =
tSINK, such that for all i = 1, . . . ,k , ti−1 and ti are input and output

tuples of OPi , respectively, and ti−1 directly contributes to ti .

A solution to fine-grained data provenance must, for each sink

tuple tSINK generated by a query, associate all the source tuples

that contribute to tSINK. In the sample query of Figure 1, the source

tuples contributing to the sink tuple (08:00:00, a, 4, 1) are the tuples

(08:00:01, a, 0, X), (08:00:31, a, 0, X), (08:01:01, a, 0, X) and (08:01:31, a,

0, X). This can easily be verified by retracing the process, as shown

in Figure 2.

Besides correctness and efficiency (in time and space), the addi-

tional requirements to be fulfilled for fine-grained data provenance

to be feasible in edge streaming applications are:

C1 A fixed-size per-tuple overhead when metadata is used to

maintain provenance information.

C2 Avoid maintaining (in memory or storage) all source tuples

to later differentiate them between contributing and non

contributing to sink tuples.

C3 The possibility of implementing the provenance semantics by

employing standard streaming operators, being thus able to

leverage existing distribution and parallelization techniques

for both the analysis run by a given streaming application

and the analysis run to provide fine-grained data provenance

for the latter.

For ease of exposition, we frame our discussion to a case in which

a single query is being deployed to one or multiple SPE instances. It

is nonetheless trivial to extend the discussion to scenarios in which

more queries are defined.

4 LINKING SINK AND SOURCE TUPLES
In this section, we discuss GeneaLog’s central idea, which allows it

to maintain information about source tuples contributing to sink

tuples with fixed-size per-tuple metadata. We describe in detail how

provenance is provided for centralized and distributed deployments

in § 5 and § 6, respectively.

The definition of the contributes relation (Def. 3.1), implies a con-
tribution graph that connects each source tuple to the sink tuple(s)

Middleware ’18, December 10–14, 2018, Rennes, France D. Palyvos-Giannas et al.

it contributes to. Figure 2 shows the contribution graph for the ex-

ample of Figure 1. An approach for maintaining such a contribution

graph, proposed by [16], is to assign a unique id to each tuple and

to enrich each tuple with meta-data that carries over the ids of the
source tuples contributing to it. In this way, contribution graphs

can be thought of as trees rooted at sink tuples with one leaf per

contributing source tuple. This approach, nevertheless, conflicts

with the motivating challenges discussed in § 3: (i) the list of ids

carried by each tuple can grow arbitrarily and (ii) all source tuples

need to be maintained (in memory or disk) until they are distin-

guished into contributing or not by inspecting the ids carried by

sink tuples.

As we show in the following, GeneaLog’s approach can solve

both shortcomings, thus addressing challenge C1 (§ 3). For Genea-

Log, the additional meta-data of each tuple consists of four meta-
attributes: Type (T), Upstream1 (U1), Upstream2 (U2) and Next (N).

For tuple t , the meta-attribute t .T specifies which operator creates

the tuple. The value of t .T can be SOURCE, MAP , MULTIPLEX ,
JOIN , AGGREGATE and REMOTE. It should be noticed that no

values are defined for operators that forward (instead of creating)

tuples (e.g., the Filter operator), as we further elaborate in § 4.1.

Meta-attributes t .U1, t .U2 and t .N are memory pointers that can be

used to access other tuples maintained by the streaming application.

In a nutshell, they are used to (i) link each output tuple produced

by an operator to the input tuples, processed by such operator, that

contribute to it, and (ii) to traverse the resulting contribution-graph

of each sink tuple, back to the source tuples contributing to it. We

describe in detail in the following how these meta-attributes are set

for the standard operators (§ 4.1) and how the contribution graph

is traversed (§ 4.2).

4.1 GeneaLog’s instrumented operators
Here we show how the meta-attributesT ,U1,U2 and N are used by

the instrumented Sources and operators listed in § 2, to maintain

the contribution graphs connecting source tuples to sink tuples.

Similarly to [16], we rely on instrumented operators and Sources

that, besides running the analysis defined by their semantics can

(i) access and modify the meta-data used for data provenance and

(ii) use such metadata to create tuples that can be then forwarded

to other operators in the query. The details of each instrumented

operator are given here:

Map

M

U1

Multiplexer

X

U1

U1

... A

U1

U2

N N N

Aggregate

J

U1

U2

Join

Figure 3: Visual representation of how the meta-attributes
(pointers)U1,U2 and N are set by the instrumented Map, Ag-
gregate and Join operators. For simplicity, we show for each
operator only the meta-attributes that are set by it, thus ig-
noring dangling pointers.

S

F

A

F

K

Filter
speed==0

Aggregate
count(),distinct(pos)
WS=120 sec, WA=30 sec
group-by=car_id

Filter
count==4 AND dist_pos==1

Source

Sink

08:00:01 a 0 X

08:00:31 a 0 X
08:00:02 b 55 Y

08:00:32 c 0 Z
08:01:01 a 0 X
08:01:31 a 0 X

ts car_id speedpos

08:00:00 a 4 1
ts car_id count dist_pos

ts car_id count dist_pos
08:00:00 a 4 1
08:00:00 c 1 1

08:00:01 a 0 X
08:00:31 a 0 X
08:00:32 c 0 Z
08:01:01 a 0 X
08:01:31 a 0 X

ts car_id speedpos

U1

U2

U2

U1

N
N
N

Sink tuples’
contribution graph

U1U2

N
N N

Figure 4: Sample query and execution from Figure 1 show-
ing meta-attributesU1,U2 and N as set by GeneaLog’s instru-
mented operators.

Source. The Source of a query creates tuples that do not depend on

other tuples. For this reason, GeneaLog’s instrumented Source sets

the meta-attribute T to SOURCE but does not set pointers U1, U2

and N .

Map. The Map operator creates one or more output tuples for each

input tuple it processes. With GeneaLog’s instrumented Map, each

output tuple tO points to the input tuple tI that contributes to it

using the meta-attribute U1, hence tO .U1 = tI , as also shown in

Figure 3. Additionally, attribute T is set toMAP .

Multiplex. TheMultiplex operator creates a copy of each input tuple

it processes for each one of its output streams. With GeneaLog’s

instrumented Multiplex, each output tuple tO points to the input

tuple tI that contributes to it using the meta-attribute U1, hence

tO .U1 = tI , as also shown in Figure 3. Additionally, attribute T is

set toMULTIPLEX .

Join. As discussed in § 2, each output tuple tO produced by a Join op-

erator has exactly two contributing input tuples tR and tS . Without

loss of generality, assuming TR is more recent than TS , GeneaLog’s
instrumented Join operator sets tO .T to JOIN as well as tO .U1 = TR
and tO .U2 = TS , as shown in Figure 3.

Aggregate. For the Aggregate, multiple input tuples can contribute

to one output tuple. Based on Definition 3.1, all the input tuples

that are part of the same window (and possibly group-by value)

contribute to the output tuple produced when the window is full. If

t1, . . . , tn are the input tuples that contribute to the output tuple tO
(being t1 the earliest tuple), GeneaLog’s instrumented Aggregate

operator sets tO .U1 = tn and tO .U2 = t1. Moreover, if n > 1, it

also sets ti .N = ti+1 for i = 1, . . . ,n − 1. Finally, it sets tO .T to

AGGREGATE, as shown in Figure 3.

Filter and Union. Since Filter and Union operators do not produce

new tuples, but rather forward existing ones across the query’s

streams, no instrumentation is defined for them.

Send and Receive. These operators are used to send tuples across
distinct processes (possibly running at different physical nodes).

From a semantics perspective, they do not create new tuples but

GeneaLog: Fine-Grained Data Streaming Provenance at the Edge Middleware ’18, December 10–14, 2018, Rennes, France

rather forward existing ones across the streams of a query. From an

implementation perspective, they indeed create new memory ob-

jects when sharing tuples across processes (optionally transmitting

them through the network). The Send operator is instrumented

so that the meta-attribute T is set to REMOTE if the latter is not

SOURCE, which allows distinguishing, locally in each process, tu-

ples produced by operators deployed at other processes.

Figure 4 shows how the meta-attributesU1,U2 and N are set for

the sample query and execution presented in Figure 1 by Genea-

Log’s instrumented operators. Moreover, it also shows the resulting

contribution graph of each sink tuple.

4.2 Traversal of the contribution graph
Once the meta-attributes defined by GeneaLog are added and set

according to the description of § 4.1, the contribution graph of

each sink tuple can be traversed back to its contributing tuples, be

them source tuples (when attribute T is set to SOURCE) or tuples
produced by operators deployed at other instances (when attribute

T is set to REMOTE).
It should be noticed that the meta-attributeU1 (for tuples of type

MAP andMULTIPLEX) together withU2 (for tuples of type JOIN)

allow traversing all their contributing tuples. For tuples of type

AGGREGATE, on the other hand, the input tuples contributing to

a given output tuple can be traversed using the meta-attribute N
starting from the contributing tuple pointed by U2 and ending at

the contributing tuple pointed by U1 (inclusive). Listing 1 presents

the traversal algorithm, which implements a breadth-first search of

the contribution graph of a tuple.

1 Se t f i ndP rovenance (r oo t) :

2 Se t provenance

3 Se t v i s i t e d

4 Queue q

5 q . addLas t (r o o t)

6 whi l e (! q . i sEmpty ()) :

7 Tuple t = q . r emoveF i r s t ()

8 sw i t ch (t . type) :

9 c a s e SOURCE or REMOTE :

10 r e s u l t . add (t)

11 c a s e MAP or MULTIPLEX :

12 e nqu eu e I fNo tV i s i t e d (t . U1 , q , v i s i t e d)

13 c a s e JOIN :

14 e nqu eu e I fNo tV i s i t e d (t . U1 , q , v i s i t e d)

15 e nqu eu e I fNo tV i s i t e d (t . U2 , q , v i s i t e d)

16 break ;

17 c a s e AGGREGATE :

18 e nqu eu e I fNo tV i s i t e d (t . U2 , q , v i s i t e d)

19 Tuple temp = t . U2 .N ;

20 whi l e (temp != n u l l && temp != t . U1)

21 e nqu eu e I fNo tV i s i t e d (temp , q , v i s i t e d)

22 temp = temp .N ;

23 e nqu eu e I fNo tV i s i t e d (t . U1 , q , v i s i t e d)

24 r e t u r n r e s u l t ;

25

26 vo id e nqu eu e I fNo tV i s i t e d (t up l e , queue , v i s i t e d) :

27 i f (! v i s i t e d . c o n t a i n s (t u p l e)) :

28 v i s i t e d . add (t)

29 queue . addLas t (t)

Listing 1: Contribution graph traversal

To facilitate the presentation in the remainder, we introduce the

term originating tuple in the following definition.

Definition 4.1. Tuple t ′ is an originating tuple of t if t ′ is returned
by the provenance method in Listing 1 as a tuple contributing to t .

Using this definition, before proceeding in more detail with ex-

planations about how provenance is guaranteed while meeting the

challenges discussed in § 3, let us observe that when a query is

entirely deployed within one process, all the originating tuples of a

sink tuple are of type SOURCE; on the other hand, they can also be

of type REMOTE when multiple SPE instances run the operators

of the query.

5 INTRA-PROCESS DATA PROVENANCE
Given the instrumented operators and the contribution graph tra-

versal approach discussed in § 4, we show here how challenges

C2 and C3 presented in § 3 (i.e., to avoid maintaining all source

tuples and to allow for provenance analysis to be implemented

utilizing standard operators) are addressed by GeneaLog, when all

the operators of a query are deployed within the process (i.e., the

same SPE instance).

With respect to challenge C2, it can be noticed that by using

memory pointers and by assuming, as discussed in § 2, that the

memory used by objects such as tuples is freed when such objects

are no longer accessible (directly or indirectly) by the processes’

threads, GeneaLog can access all the information it needs, without

maintaining or storing source tuples; this is so since the memory

used by them will be referenced (and thus not reclaimed) as long as

a reference to the sink tuple they contribute to exists. On the other

hand, as soon as a tuple no longer contributes to any output or sink

tuple, it will be dereferenced, and its memory can be reclaimed.

To facilitate the explanation of how GeneaLog addresses chal-
lenge C3, we first introduce an auxiliary term:

Definition 5.1. Stream U is the unfolded stream obtained from

stream S if each tuple t ∈ S is replaced by its originating tuples (see

Def. 4.1) combined with t ’s attributes.

SU

Single-stream
Unfolder

SI SO

U

A)

X

M

Multiplexer

Map

SI SO

U
SM

B)

Figure 5: SU operator (A) and implementation of its seman-
tics using the standard operators (B).

In the following, by considering the existence of a single-stream
unfolder operator, whose semantics are described in Definition 5.2,

we show that fine-grained data provenance can be achieved (The-

orem 5.3), by enriching the query with such an operator. Next, in

§ 5.1, we show that the semantics of such a streaming operator can

indeed be achieved utilizing the instrumented standard operators

described in § 3, thus addressing challenge C3. Moreover, we pre-

pare the ground for the explanation of GeneaLog’s inter-process

data provenance, later provided in § 6.

Definition 5.2. The SU (single-stream unfolder) operator (Fig-
ure 5A) has one input stream SI and produces two output streams:

Middleware ’18, December 10–14, 2018, Rennes, France D. Palyvos-Giannas et al.

the first one (SO) is an exact copy of SI and the second one (U) is

the unfolded stream of SI .

Theorem 5.3. A query in which an additional SU operator is added
before each Sink (with SO feeding the Sink) provides fine-grained data
provenance through U .

Proof. Since all the operators of the query are deployed within

the same process, the unfolded streamU of each SU operator, for the

Sink to which the SU operator is connected, contains originating

tuples of type SOURCE only, and thus delivers a stream in which

each sink tuple is combined with all the source tuples contributing

to it, thus providing fine-grained data provenance. □

5.1 SU implementation using standard
operators

Figure 5B shows how the semantics of the SU operator can be de-

fined utilizing the instrumented operators provided by GeneaLog.

As discussed in § 2, we stress that it is not necessary to map each of

these operators to a dedicated thread (communicating with other

threads and operators through shared queues). Efficient implemen-

tation can assign these operators to the same thread using chaining

(e.g., as possible in Apache Flink [8]) or by implementing their

semantics in a single user-defined operator.

As shown in Figure 5B, first a Multiplex operator can be used

to duplicate the tuples of the input stream SI and forward them to

streams SO (which will deliver SI ’s tuples to the following Sink)

and SM . Then, a Map operator can be used, to unfold SM to U by

applying the findProvenance function (Listing 1) and produce, for

each sink tuple tSINK, a tuple carrying tSINK’s attributes and the

attributes of each originating source tuple of tSINK.

6 INTER-PROCESS DATA PROVENANCE
In this section, we extend the provenance technique discussed in § 5

to setups where the operators of a query are deployed to multiple

SPE instances.

A first observation we can make in this case is that relying solely

on the process memory management to keep references to source

tuples that contribute to sink tuples with the help of pointers is not

sufficient since pointers assigned to tuples that are later forwarded

across processes and dereferenced would be lost. Before explaining

how GeneaLog’s approach provides inter-process provenance, we

first introduce some further notation and terms. We argue about

correctness along with the presentation of our method, following

the methodology of the previous section. I.e., first, by considering

the existence of an additional (multi-stream unfolder) streaming

operator, whose semantics are described in Definition 6.4, we show

that fine-grained data provenance can be achieved. Next, we show

that the semantics of this streaming operator can be implemented by

composing standard operators described in § 3. In this way, besides

proving correctness, we explain how GeneaLog meets challenge

C3 (§ 3) in inter-process data provenance as well.

We refer to the n SPE instances in which a query is deployed

as V = V1, . . . ,Vn . We say that Vi is a source SPE instance if the
operators deployed inside it are fed by Sources also deployed inside

it, but not from other SPE instances (i.e., if no Receive operators

are deployed at Vi). We say Vi is a sink SPE instance if Sinks are

deployed in it, and Vi does not contain Send operators. Finally, we

say Vi is an intermediate SPE instance if it is neither a source nor a
sink SPE instance. The ordering value ofVi is defined as the longest
path in the graph of SPE instances from a source SPE instance to

Vi . Let Vq denote the set of SPE instances having ordering value q.
For inter-processing provenance, we also assume tuples’ constant-

size meta-data is enriched by one additional meta-attribute ID,
which is a unique id for each tuple

2
. We also use the terms de-

livering stream, unfolded delivering stream and complete unfolded
delivering stream, defined here:

Definition 6.1. Stream S is a delivering stream if it feeds a Sink or

is produced by a Send operator.

Definition 6.2. Stream U is the unfolded delivering stream ob-

tained from the delivering stream S if each tuple t ∈ S is replaced

by its originating tuples (see Def. 4.1) concatenated with t ’s at-
tributes. For each tuple t ′ inU , we refer to the originating tuple’s

attributes ID and ts that tuple t ′ carries as t ′.tsO and t ′.IDO .

Definition 6.3. StreamU is a completely unfolded delivering stream
if all its tuples are of type SOURCE.

The additional operator, called multi-stream unfolder (MU), is

defined below and presented in Figure 6.

Definition 6.4. The MU (multi-stream unfolder) operator defines
multiple unfolded delivering streams (see Def. 6) as input streams:

(i) one derived and (ii) an arbitrary number of upstream unfolded

delivering streams. Additionally, it defines one output stream. Each

tuple t in the derived stream is forwarded to the output stream if

it is of type SOURCE. Alternatively, it is replaced by the sequence

of tuples t1, . . . , ti , . . . , tn found in any upstream stream for which

ti .ID = t .IDO ; this sequence is then forwarded to the output stream.

MU

Multi-stream
Unfolder

Derived stream

Output stream

Upstream streams ...

Figure 6: Representation of the input and output streams de-
fined by the MU operator (Def. 6.4)

Finally, assuming that the SU operator presented in § 5 can be

used to produce unfolded delivering stream (the additional setting of

attributes ts and ID can be done by the Map operator in Figure 5),

we can state the following theorem, that builds on complementing

queries with SU and MU operators.

Theorem 6.5. Given a query Q , let us define a query QE that is
composed by the same operators defined byQ , plus (i) one SU operator
preceding each Send operator and each Sink, (ii) one MU operator
for each Send operator < V0 and for each Sink < V0 and (iii) any
additional number of Send / Receive operator pairs according to how
QE ’s extra operators are deployed.

Let us connect these SU and MU operators so that:
2
For instance, composed by the unique id of the Source or operator producing the

tuple and a sequential counter, as done by [16].

GeneaLog: Fine-Grained Data Streaming Provenance at the Edge Middleware ’18, December 10–14, 2018, Rennes, France

S F A F K

Aggregate FilterSource SinkFilter

SU

Single-stream
Unfolder

SU

SPE instance 1

Single-stream
Unfolder

SPE instance 2K2

MU

Multi-stream
Unfolder

SPE instance 3

Figure 7: Distributed deployment of the sample query (Fig-
ure 1) with SU and MU operators for data provenance and
an additional Sink K2 to persist provenance data.

• each stream Si feeding a Send operator or a Sink is unfolded
intoUi by the corresponding SUi ,

• each stream Ui ∈ Vj |j > 0 is fed as the derived stream to the
corresponding MUi ,

• each stream Ui produced by an SUi that precedes a Send op-
erator is fed as an upstream stream to the MU operator of the
instance to which Si is delivered.

Then, QE provides fine-grained data provenance for each Sink K in
Q through: (i) the Ui stream produced by the SUi preceding K (if
K ∈ V0) or (ii) the stream Ok generated by the MUk associated to K .

Proof. Any unfolded delivering streamUi from an SPE instance

Vj in V0 is complete since, for each tuple t ∈ Ui , t ’s contributing
tuples are provided by the Sources deployed at Vj . Similarly, any

stream Oi produced by an MUi operator from an instance Vj in
V1 is also complete since, for each tuple t ∈ Oi , t ’s contributing
tuples can only be provided by Sources deployed at Vj or tuples
forwarded by instances in V0, which are all of type SOURCE and

can be found in the upstream streams of MUi . By induction, any

stream Oi produced by an MUi operator from an instance Vj in
Vl is also complete since, for each tuple t ∈ Oi , t ’s contributing
tuples can only be provided by Sources deployed at Vj or tuples
forwarded by the output streams of MU operators from instances in

Vm |m < l , which are all of type SOURCE and can be found in the

upstream streams of MUi . Delivering streams connected to Sinks

inVj |j > 1 are thus unfolded by an SU operator and then fed as

derived streams to MU operators that produce a sequence of tuples

in which each sink tuple is combined with all the source tuples

contributing to it, thus providing fine-grained data provenance. □

Figure 7 shows how SU and MU operators are added to the

query presented in Figure 1 when its operators are deployed at

three distinct SPE instances. For simplicity, Figure 7 and the figures

shown in the remainder for query deployed at multiple processes do

not show explicitly Send and Receive operators. In the following, we

show how the MU operator can be implemented using GeneaLog’s

instrumented operators.

6.1 MU implementation using standard
operators

The key operator needed to implement the semantics of the MU

operator (Def. 6.4) is a Join. Considering the SPE ordering values

as defined in this section, the Join in MU at a particular at each

ordering value level processes unfolded streams of the previous

and the current level of SPE instances, to extract useful information

to be fed to downstream SPEs, in order to generate the source-

and-sink tuple pairs belonging to the contributes relation (Def. 3.1).

Figure 8 shows how the MU operator can be constructed, utilizing

the standard operators described in § 2. For ease of explanation,

let us first assume that the MU operator is fed by exactly one

upstream stream SD and by a single derived stream ST , that does
not contain any SOURCE tuples. In order to produce the output

unfolded stream, the core semantics of the MU operator can be

implemented using a Join operator, the predicate of which is used

to match a tuple tD ∈ SD and tT ∈ ST if tD .ID == tT .IDO and

whose window size is set to the sum of the window sizes of the

stateful operators deployed at the instance producing ST ; the latter
guarantees no tuple tD is purged by the Join before a tuple tT for

which the Join’s predicate hold has been processed.

As shown in the figure, if the MU operator needs to deal with

multiple delivering unfolded upstream-streams, then a Union oper-

ator can be used to merge their tuples deterministically into one

stream. If, moreover, tuples of type SOURCE can be found in ST , a
set of operators including one Multiplex operator, two Filter opera-

tors, and an additional Union operator can be used: as shown in the

figure, the Multiplex operator is used to feed each tuple delivered

by ST into the two Filter operators F1 and F2. F1 forwards tuples
that are not of type SOURCE to the Join operator while F2 forwards
tuples of type SOURCE to the Union operator, which eventually

merges them with the tuples produced by the Join operator into its

output stream.

U

J

Join

Union

Upstream
streams Derived stream

... X

F1

Multiplexer

F2

Filter Filter

U

Union

Output stream

Optional operator
needed only when two or

more upstream
streams exist

Optional
operators
needed only when
SOURCE tuples
exist in the
derived stream

Figure 8: Implementation of the MU operator’s semantics
using the standard operators defined in § 2.

7 EVALUATION
In this section, we evaluate GeneaLog’s performance. We first intro-

duce the hardware and software setup. Subsequently, we present

the different use cases we take into account. We then discuss the

performance observed for these use cases when no fine-grained data

provenance is maintained and when GeneaLog provenance capture

is active, for deployments to a single process (to evaluate Genea-

Log’s intra-process technique, § 5) and to multiple processes run by

different physical nodes (to evaluate GeneaLog’s inter-process tech-

nique, § 6). For both deployments, we also compare our algorithm

with an implementation of Ariadne, the current state-of-the-art in

eager streaming data provenance [16] that is as general as ours and

is targeted for use in stream processing systems. Finally, we provide

a detailed analysis of the cost of traversing the contribution graph

in each process in the intra-process and inter-process scenarios.

Middleware ’18, December 10–14, 2018, Rennes, France D. Palyvos-Giannas et al.

Hardware and software setup. For the hardware to resemble the

embedded devices deployed in modern cyber-physical systems, the

experiments are conducted on a network of 3 Odroid-XU4 [29]

(or simply Odroid in the remainder), equipped with a Samsung

Exynos5422 Cortex-A15 2Ghz and Cortex-A7 Octa core CPUs and

with 2 GB of memory. The Odroids are running a variant of Ubuntu

16.04.4 LTS and are using Java HotSpot(TM) Client VM 1.8.0_161-

b12. They are connected to a 100Mbps switch. The experiments are

performed using the lightweight Liebre SPE [27].

To evaluate GeneaLog, we consider the throughput (the average
number of tuples per second that query can process), the latency
(the average time interleaving the production of each sink tuple

and the reception of the latest source tuple contributing to it), the

memory footprint (the average and maximum size of memory used

by the process running a given query) and the traversal time of the

contribution graph of each sink tuple.

The provenance information of each sink tuple is calculated

using the algorithm in Listing 1 and stored on disk. Note that in

our experiments the total size of the provenance information is

negligible compared to that of the source data (ranging from 0.003%

to 0.5% of the latter). Although beyond the scope of our evaluation,

each sink tuple’s provenance information could also be forwarded

to the end user (rather than stored) given its negligible impact on

the overall network traffic. Experiments are at least six minutes

long. Statistics are taken after a warm-up phase and before the cool

down phase. Results are averaged over five runs and present the

95% confidence interval.

To compare with the state-of-the-art technique of Ariadne, we

opted for a new implementation since the published one is based

on the Borealis SPE [1], discontinued since 2008. As discussed in

§ 4, this technique, which we refer to as the baseline BL, annotates
intermediate tuples with variable-length provenance metadata. In

order to retrieve the actual provenance result, source streams are

temporarily maintained and later joined with the annotated output

streams.

A) Linear Road - Accidents (Q2) Query B) Sink tuples’
 contribution graph

C) Distributed deployment (including provenance operators)

S F A F K

Filter Aggregate Filter

A F

Aggregate
count(distinct(car_id))
WS=30 sec, WA=30 sec

group-by=last_pos Filter
count>1

ts countlast_pos

Source
Sink

Same as Q1 (with the Aggregate’s
output tuples carrying each car’s last
position with the extra last_pos field)

U1U2

S F A F K

Aggregate FilterSource SinkFilter

SU

Single-stream
Unfolder

SU

SPE instance 1

Single-stream
Unfolder

SPE instance 2
K

MU

Multi-stream
Unfolder

SPE instance 3

F

Filter

A

Aggregate

U1U2

N N N

U1U2

N N
N

Figure 9: A) Query Q2. B) Sink tuples’ contribution graph,
with 8 input tuples. C) Distributed deployment.

A) Smart Grid – Blackout (Q3) Query B) Sink tuples’
 contribution graph

C) Distributed deployment (including provenance operators)

S A F K

Aggregate Filter
Source

Sink

SU

Single-stream
Unfolder

SU

SPE instance 1

Single-stream
Unfolder

SPE instance 2
K

MU

Multi-stream
Unfolder

SPE instance 3

F

Filter

A

Aggregate

S A F F K

Aggregate
sum(cons)

WS=1 day, WA= 1 day
group-by=meter_id

Filter
cons_sum==0

ts meter_id cons ts count

A

Aggregate
count()

WS=1 day, WA= 1 day

Filter
count>7

ts meter_id cons_sum

Source Sink

U1
U2

...

U1U2

N N

...

24

U1
U2

N N

...

24

Figure 10: A) Query Q3. B) Sink tuples’ contribution graph,
with 192 input tuples on average. C) Distributed deploy-
ment.

Use cases. We test GeneaLog with two queries from the vehicular

network domain (using the Linear Road benchmark [5]) and two

queries implementing real use case from a real-world Smart Grid

infrastructure. As we discuss in the following, all the standard

operators presented in § 2 are used by these queries. Also, the

different queries are chosen to observe the overhead incurred by

GeneaLog for different amounts of information (e.g., contribution

graph size) needed to maintain provenance information.

(Q1) - Detecting broken-down cars (Linear Road benchmark). The
first use case we test is the one presented in § 2 (Figure 1), based on

the Linear Road benchmark [5], an established standard to study

SPEs’ performance. It simulates vehicular traffic on a number of

linear expressways, each composed of predefined segments. This
is a representative example where stream processing in fog/edge

architectures can result in extra benefits compared to processing

in the cloud, as discussed in [11]. The generated data simulates

the traffic of one highway since its volume is adequate for our

evaluation.

As discussed in § 2, position reports are forwarded every 30 sec-

onds by the cars traveling in the highway and carry the attributes
3

⟨ts, car_id, speed, position⟩. A car is stopped if at least four consec-

utive position reports from the same car report zero speed and the

same position.

(Q2) - Detecting accidents (Linear Road benchmark) - Figure 9. This
second query extends Q1 to detect accidents. In the Linear Road

benchmark, an accident is detected if at least two broken-down

cars are found in the same position at the same time. This query

defines the same operators as Q1
4
plus an additional Aggregate

and an additional Filter operator. The former aggregates using the

3
Some unrelated attributes have been omitted to preserve clarity. We also use a single

position attribute for ease of exposition (in the benchmark, positions are given by

several attributes).

4
With the Aggregate operator producing tuples with an extra last_pos field carrying

the last position reported by each car.

GeneaLog: Fine-Grained Data Streaming Provenance at the Edge Middleware ’18, December 10–14, 2018, Rennes, France

position as the group-by and a window of size and advance of 30

seconds. The resulting tuple carries the number of stopped vehicles

observed for each position in the same time window. Subsequently,

the Filter operator forwards only the tuples carrying a counter that

is equal to or greater than 2. As for provenance, 8 source tuples

contribute to each sink tuple.

(Q3) - Long-term blackout detection (Smart Grid) - Figure 10. This
query aims at detecting blackouts in Smart Grid systems. Source

tuples are measurements forwarded by smart meters every hour,

with schema ⟨ts,meter_id, consumption⟩. Source data is grouped

by meter, and the consumption is summed throughout each day by

an Aggregate operator. A Filter forwards tuples with zero consump-

tion to a second Aggregate, which counts them with a window of

size and advance equal to one day. If there are more than seven me-

ters which reported zero consumption for a whole day, then an alert

is raised by the system. In this case, 192 source tuples contribute to

each sink tuple on average.

(Q4) - Anomaly detection (Smart Grid) - Figure 11. This query aims at

detecting faulty meters that show a suspiciously high consumption

in correspondence with the beginning of a new day (i.e., reporting

such value at midnight). Such behavior usually indicates meters are

compensating for missing reported consumption about the previ-

ous day. The source tuples have the same schema as in Q3 and once

again are forwarded every hour. The source stream is broken into

two identical streams. The first one is sent to an Aggregate that is

similar to the one in Q3, grouping by meter and calculating the daily

consumption. The second stream is forwarded to a Filter which

allows only the measurements done at midnight to pass through.

The results of the Filter and the Aggregate with the same meter_id

are joined using a window of one hour, and the consumption of the

output is set as the absolute difference between the two inputs. Fi-

nally, another Filter produces an alert if the consumption difference

is higher than a specified threshold. 24 source tuples contribute to

each sink tuple.

A) Smart Grid – Anomaly (Q4) Query B) Sink tuples’
 contribution
 graph

C) Distributed deployment (including provenance operators)

S

ts meter_id cons

X A

F

J F K

ts meter_id cons_diff

ts meter_id cons_sum

Aggregate
sum(cons)

WS=1 day, WA= 1 day
group-by=meter_id

Source SinkMultiplexer
Filter

cons_diff>200

Filter
ts%24==0

Join
L.meter_id=R.meter_id

WS=1 hour

F

Filter
cons_diff>200

U1

U2

U1U2

N N

...

24

S X A

F K

Aggregate

Filter

Source

Sink

Multiplex

SU
Single-stream

Unfolder

SU

SPE instance 1

Single-stream
Unfolder

SPE instance 2
K

MU

Multi-stream
Unfolder

SPE instance 3

F

Filter

J

JoinF

Filter

SU

Single-stream
Unfolder

Figure 11: A) Query Q4. B) Sink tuples’ contribution graph,
with 24 input tuples. C) Distributed deployment.

NP GL BL
0.0

1.5

3.0

4.5

6.0
×104

Throughput
t/s

Q1

-3
.7

%

-9
3

.7
%

NP GL
0

2000

4000

6000

8000

Latency
ms

+
3

.2
%

NP GL
0.0

1.5

3.0

4.5

6.0

Average Memory
MB

+
6

.3
%

NP GL
0.0

1.5

3.0

4.5

6.0

Max Memory
MB

+
0

.0
%

NP GL BL
0.0

1.5

3.0

4.5

6.0
×104

Q2

-3
.8

%

-9
4

.0
%

NP GL
0

2000

4000

6000

8000

+
3

.3
%

NP GL
0.0

1.5

3.0

4.5

6.0

+
2

.0
%

NP GL
0.0

1.5

3.0

4.5

6.0

+
0

.0
%

NP GL BL
0

2

4

6

8
×104

Q3

-6
.8

%

-9
7

.3
%

NP GL
0

150

300

450

600

+
7

.7
%

NP GL
0

15

30

45

+
1

.8
%

NP GL
0

15

30

45

-1
.3

%

NP GL BL
0

2

4

6

8
×104

Q4 -5
.4

%

-4
9

.6
%

NP GL
0

150

300

450

600

+
1

3
.9

%

NP GL
0

15

30

45

+
6

6
.2

%

NP GL
0

15

30

45

+
1

4
0

.0
%

NP: No Provenance / GL: GeneaLog / BL: Baseline

Figure 12: Evaluation of the impact of provenance compu-
tation for the intra-process provenance, when the use cases
are deployed at a single process.

Intra-process performance. The results of the experimental evalua-

tion of intra-process provenance are presented in Figure 12. Each

row of the graph refers to one query, and each column is a perfor-

mance metric. As discussed later in this section, the performance

degradation in the case of the baseline is so severe that we failed

to record useful data for latency and memory consumption, thus

forcing us to display only the throughput values.

In both the Linear Road Benchmark queries (Q1 and Q2), the

throughput and latency overhead of GeneaLog’s fine-grained prove-

nance is less than 4%. The reduction in throughput is around 2000

t/s in both cases, and there is an increase in latency by 97 ms and 210

ms respectively. The change in the average memory consumption

is less than 500 KB.

Results are similar for the Smart Grid queries. The blackout detec-

tion query (Q3) has a decrease of about 7% or 4680 t/s in throughput,

and an increase of approximately 33 ms in latency when GeneaLog

is enabled. Moreover, the actual memory consumed in general is

so small that in the second query the maximum memory usage

drops slightly (we believe this is because of the different behavior

of Java’s garbage collector). In the anomaly detection query (Q4)

the throughput drops by 2590 t/s and the latency increases by about

15 ms. This is the case for which we observe the higher increase in

memory consumption, 66%. However, the actual memory consumed

remains very low, less than 2% of the total available memory of

the device. The overhead in these two queries is slightly higher,

which is expected since (i) they produce a more substantial number

of events, and thus a higher volume of provenance data (almost

two orders of magnitude more than the Linear Road Benchmark

Middleware ’18, December 10–14, 2018, Rennes, France D. Palyvos-Giannas et al.

queries) and (ii) their windows are larger and thus contain more

tuples. The effect of windowing in memory consumption is more

pronounced in Q4 since it uses two consecutive windowed opera-

tions and tuples that are candidates for provenance need to spend

more time in memory until they can be safely garbage collected.

As far as the baseline is concerned, in all the queries except for

Q4, its average throughput is an order of magnitude lower than

GeneaLog. The bottleneck is given by BL’s high usage of memory.

Further, we observed that the throughput measured for BL keeps

decreasing as the experiment progresses, reaching values close

to zero, thus indicating that the processes are overloaded. Due to

this, we do not report BL’s data related to memory consumption

(since this is always more than one order of magnitude higher,

approximately) nor to latency (since it was not possible to get an

accurate representation of the latency based on the limited number

of sink tuples produced by the queries).

NP GL BL
0.0

1.5

3.0

4.5

6.0
×104

Throughput
t/s

Q1

-1
.9

%

-9
1

.9
%

NP GL
0

2000

4000

6000

8000

Latency
ms

+
1

.6
%

NP GL
0

6

12

18

24

Average Memory
MB

+
7

9
.9

%

NP GL
0

6

12

18

24

Max Memory
MB

+
7

5
.0

%

NP GL BL
0.0

1.5

3.0

4.5

6.0
×104

Q2

-2
.8

%

-9
1

.9
%

NP GL
0

2000

4000

6000

8000

+
1

.9
%

NP GL
0

6

12

18

24

+
8

4
.7

%
NP GL

0

6

12

18

24

+
7

5
.0

%

NP GL BL
0

2

4

6

8
×104

Q3 -7
.4

%

-9
5

.7
%

NP GL
0

150

300

450

600

+
9

.6
%

NP GL
0

15

30

45

60

+
6

6
.0

%

NP GL
0

15

30

45

60

+
7

2
.4

%

NP GL BL
0

2

4

6

8
×104

Q4 -1
0

.2
%

-8
6

.9
%

NP GL
0

150

300

450

600

+
4

6
.3

%

NP GL
0

15

30

45

60 +
4

3
.2

%

NP GL
0

15

30

45

60

+
4

8
.0

%

NP: No Provenance / GL: GeneaLog / BL: Baseline

Figure 13: Evaluation of the impact of provenance compu-
tation for inter-process provenance, when the use cases are
deployed at distinct processes and physical nodes.

Inter-process performance. Figure 13 presents the results of the

same experiments for the inter-process case. In all distributed de-

ployments, we use two Odroids for data processing and one more

for recording the final provenance stream. Note that the memory

consumption is measured as the sum of the consumption of each

process. While the memory consumption in the processing nodes

remains almost identical, the total memory consumption shown

in the graphs is always higher due to the additional node. The

memory consumption of the additional node is the darker-colored

part at the top of the bars. As shown in the figures, the difference

0.5 1.0 1.5

ms

Q1

Q2

Q3

Q4

Intra-Process

0.1 0.2 0.3

ms

Q1

Q2

Q3

Q4

Inter-Process

Contribution Graph Traversal SPE

1

2

Figure 14: Time required to traverse the contribution graph
for each output tuple.

in memory consumption is mainly given by the additional node’s

memory consumption.

The deployment of the two Linear Road queries (Q1 and Q2) is

shown in Figures 7 and 9. The impact of GeneaLog’s provenance

in throughput and latency is less than 3%. More specifically, in

the stopped vehicles detection query (Q1), there is a decrease in

throughput of 1032 t/s and an increase in latency of 50 ms whereas

these numbers for the accident detection (Q2) are 1483 t/s and 124

ms respectively. The memory consumption on the two nodes that

process the actual data is almost identical, but as mentioned above,

the cost of adding the additional node for provenance computation

is reflected by the higher memory requirements.

The Smart Grid queries are deployed as in Figures 10 and 11.

For the blackout detection query (Q3) there is a drop of 7.4% in

throughput (-5000 t/s) and an increase of approximately 9.6% (+42

ms) in latency when GeneaLog is active. For the anomaly detection

query (Q4) the impact is higher, around 5100 t/s (-10.2%) drop in

throughput and 46 ms (+46.3%) increase in latency. The effect of the

large window and the relatively high output event rate is even more

prevalent in the distributed case because a larger number of tuples

need to be serialized over the network to the third "provenance"

node, negatively impacting throughput and latency as a result.

The behavior of BL, in this case, is on par with the intra-process

experiments. Not only does the memory once again become a bot-

tleneck but also in these experiments the network communication

overhead incurred by serializing and transporting all the source

streams through the network is so high that the system produces

very little or no provenance data (even when increasing the dura-

tion of the experiments). As discussed in § 6, GeneaLog overcomes

this problem since it only transmits the actual provenance data

between nodes instead of the entire source stream.

Graph Traversal Overhead. To achieve further insight into the per-

formance characteristics of our technique, we evaluated the cost of

traversing the contribution graph (Listing 1) for every sink tuple

produced. Figure 14 shows the results for both the intra-process

and the inter-process case. For the former, in the majority of the

queries, the traversal requires on average less than 0.4 ms. Even in

Q3 which has the largest provenance graph with hundreds of tuples,

the average overhead is approximately 1.6 ms, which is negligible

GeneaLog: Fine-Grained Data Streaming Provenance at the Edge Middleware ’18, December 10–14, 2018, Rennes, France

considering the low frequency of alerts in streaming monitoring

applications. For the latter, the average traversal time in all queries

in SPE instances 1 and 2 is less than 0.3 ms. This lower overhead

is expected since the contribution graph in these experiments is

split into multiple SPE instances, reducing the amount of work on

each processing node. The slightly higher overhead in the first SPE

instances is also expected since the contribution graphs are larger

in these nodes which are closer to the sources.

Summary of evaluation results. As we showed in the different ex-

periments, the overhead introduced by the GeneaLog framework in

real-world use cases is minimal. In the majority of cases, the perfor-

mancemetrics of the queries were reduced by less than 15%whereas

the memory usage remained less than 25MB. Even in queries which

were more demanding for provenance, it continued to incur little

overhead while running on resource-constrained devices, with the

main performance bottleneck being the CPU. On the contrary, pre-

viously known provenance approaches proposed in the literature

led to degradation of the QoS metrics of the query and proved

inadequate for our use cases. This result indicates that GeneaLog

can indeed be used in edge and fog environments with inexpensive,

low-energy devices.

8 RELATEDWORK
Although many different types of provenance exist [17], the most

related to our work are data provenance and workflow provenance.
In the field of databases[37], data provenance tracks individual data

items to find from where the data of a result comes from (which

attributes), how such result is produced (which operations) and

why (i.e., the lineage of the result). It requires a high degree of

instrumentation and strict semantics, which are usually defined

in a database system [9] [21]. Alternatively, why-not provenance
tries to explain why some expected results were missing from the

output [7]. Workflow provenance is more general and refers to

tracking the scientific, business and data analytics workflows [15]

[13]. Provenance is especially challenging in the field of big data

analytics [12] since many traditional techniques require access to

the whole dataset and are thus inapplicable. Several provenance

toolkits have been proposed for popular analytics frameworks such

as Lipstick and Inspector Gadget [30] [4] for Pig [31] and Titian

[24] for Apache Spark [38].

When focusing on streaming applications, early work on prove-

nance has been discussed in [34], proposing a low-latency technique

for generating coarse-grained provenance information about the

dependencies between different streams instead of individual tuples.

In [36], Wang et al. deem annotation based techniques inadequate

and propose a model-based provenance technique for provenance

in medical stream processing systems. Apart from the need to define

explicit provenance rules on each operator their implementation

requires all intermediate streams and thus is not well-suited for

modern stream processing systems. A different approach, aimed

at minimizing the storage requirements of provenance is followed

in [22] where the processing time along with other run-time char-

acteristics are utilized to generate the provenance information.

However, this technique is not applicable to all the standard op-

erators presented in § 2. The use of fine-grained data provenance

in debugging stream processing applications is described in [14].

Provenance, in this case, is constructed using automatically gen-

erated inter-operator data-flows and user-defined intra-operator

relations. Due to the performance impact and huge data volume

of provenance-related data, the authors suggest using time-based

and topology-based execution slices. Ariadne [16] is, to the best

of our knowledge, the closest approach to GeneaLog in the litera-

ture. While also relying on operator instrumentation, it nonetheless

requires the storing of all input data and uses variable-length an-

notations, potentially leading to degradation figures similar to the

ones presented in our evaluation section.

Related in spirit to GeneaLog’s distributed provenance approach,

data streaming fault tolerance techniques are designed to maintain

information about the data sent from a node A to a node B by

forwarding copies ofA’s output tuples to replicas [6] or by buffering
output tuples at A (the ones sent since the last backup of B for

passive-standby [2] or all the ones contributing to B’s state in

upstream-backup [23]). To the best of our knowledge, existing

solutions are not designed to purge the additional information A
maintains per tuple as soon as such tuple can no longer contribute

to a sink tuple but rather when such tuple is received by all replicas,

safely persisted in a backup or acknowledged as processed by B.
That is, existing solutions do not aim at minimizing the additional

information they maintain based on whether the latter contributes

to the application’s results. As we mention in § 9, it would be

valuable to study the joint benefits of techniques for reliable stream

processing and provenance.

9 CONCLUSIONS AND FUTUREWORK
We presented GeneaLog, a method for streaming applications’ fine-

grained data provenance, and its algorithmic implementations for

intra-process and inter-process deployments. GeneaLog advances

the state-of-the-art by defining a technique in which performance

overheads are minimized. This is crucial for streaming applications

running edge analysis in modern cyber-physical systems. Under

the hood, this is achieved by leveraging a small, fixed-size set of

meta-attributes for each tuple processed by a streaming application

(in contrast to existing solutions that rely on an arbitrary number

of meta-attributes) and by using processes’ memory reclamation

techniques to discard tuples as soon as they do not contribute to

other tuples in the streaming application.

We provide a fully implemented prototype and show it incurs

small throughput and latency overheads and, in the worst case,

a memory footprint of some tens of megabytes, in contrast with

state-of-the-art techniques’ overheads that are at least one order of

magnitude greater and rapidly exhaust the memory of the devices

running the analysis.

We believe that the results we present can be further investigated

(i) to define operator-specific optimizations for window-based anal-

ysis and reduce overheads when only some (rather than all) of the

tuples of a window contribute to a sink tuple, (ii) to adapt Genea-

Log’s technique to SPEs with ad-hoc memory management and (iii)

to leverage GeneaLog in fault tolerance approaches that rely on

upstream peers’ buffering and minimize the number of tuples the

latter maintain (in order to replay them in case of failure).

Middleware ’18, December 10–14, 2018, Rennes, France D. Palyvos-Giannas et al.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their insightful comments

and suggestions. The work was supported by the Swedish Founda-

tion for Strategic Research, proj. “Future factories in the cloud (FiC)”

grant nr. GMT14-0032, by the Chalmers Energy AoA framework

proj. INDEED and STAMINA and by the Swedish Research Council

(Vetenskapsrådet) proj. “HARE: Self-deploying and Adaptive Data

Streaming Analytics in Fog Architectures” grant nr. 2016-03800.

REFERENCES
[1] Daniel J Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur Cetintemel, Mitch

Cherniack, Jeong-Hyon Hwang, Wolfgang Lindner, Anurag Maskey, Alex Rasin,

Esther Ryvkina, et al. 2005. The Design of the Borealis Stream Processing Engine..

In Second Biennial Conference on Innovative Data Systems Research (CIDR 2005),
Vol. 5. Asilomar, CA, USA, 277–289.

[2] Tyler Akidau, Alex Balikov, Kaya Bekiroğlu, Slava Chernyak, Josh Haberman,

Reuven Lax, Sam McVeety, Daniel Mills, Paul Nordstrom, and Sam Whittle. 2013.

MillWheel: fault-tolerant stream processing at internet scale. Proceedings of the
VLDB Endowment 6, 11 (2013), 1033–1044.

[3] M. H. Ali, C. Gerea, B. S. Raman, B. Sezgin, T. Tarnavski, T. Verona, P. Wang,

P. Zabback, A. Ananthanarayan, A. Kirilov, M. Lu, A. Raizman, R. Krishnan, R.

Schindlauer, T. Grabs, S. Bjeletich, B. Chandramouli, J. Goldstein, S. Bhat, Ying

Li, V. Di Nicola, X. Wang, David Maier, S. Grell, O. Nano, and I. Santos. 2009.

Microsoft CEP Server and Online Behavioral Targeting. Proc. VLDB Endow. 2, 2
(Aug. 2009), 1558–1561. https://doi.org/10.14778/1687553.1687590

[4] Yael Amsterdamer, Susan B Davidson, Daniel Deutch, Tova Milo, Julia Stoy-

anovich, and Val Tannen. 2011. Putting lipstick on pig: Enabling database-style

workflow provenance. Proceedings of the VLDB Endowment 5, 4 (2011), 346–357.
[5] Arvind Arasu, Mitch Cherniack, Eduardo Galvez, David Maier, Anurag S. Maskey,

Esther Ryvkina, Michael Stonebraker, and Richard Tibbetts. 2004. Linear Road: A

StreamData Management Benchmark. In Proceedings of the Thirtieth International
Conference on Very Large Data Bases - Volume 30 (VLDB ’04). VLDB Endowment,

Toronto, Canada, 480–491. http://dl.acm.org/citation.cfm?id=1316689.1316732

[6] Magdalena Balazinska, Hari Balakrishnan, Samuel Madden, and Michael Stone-

braker. 2005. Fault-tolerance in the Borealis Distributed Stream Processing

System. In Proceedings of the 2005 ACM SIGMOD International Conference on
Management of Data (SIGMOD ’05). ACM, New York, NY, USA, 13–24. https:

//doi.org/10.1145/1066157.1066160

[7] Nicole Bidoit, Melanie Herschel, and Aikaterini Tzompanaki. 2015. Efficient

Computation of Polynomial Explanations of Why-Not Questions. In Proceed-
ings of the 24th ACM International on Conference on Information and Knowl-
edge Management (CIKM ’15). ACM, New York, NY, USA, 713–722. https:

//doi.org/10.1145/2806416.2806426

[8] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,

and Kostas Tzoumas. 2015. Apache Flink: Stream and batch processing in a

single engine. Bulletin of the IEEE Computer Society Technical Committee on Data
Engineering 36, 4 (2015).

[9] James Cheney, Laura Chiticariu, and Wang-Chiew Tan. 2007. Provenance in

Databases: Why, How, and Where. Foundations and Trends in Databases 1, 4
(2007), 379–474. https://doi.org/10.1561/1900000006

[10] Riccardo Coppola and Maurizio Morisio. 2016. Connected car: technologies,

issues, future trends. ACM Computing Surveys (CSUR) 49, 3 (2016), 46.
[11] Stefania Costache, Vincenzo Gulisano, and Marina Papatriantafilou. 2016. Un-

derstanding the data-processing challenges in Intelligent Vehicular Systems.

In Intelligent Vehicles Symposium (IV), 2016 IEEE. IEEE, Gothenburg, Sweden,
611–618. https://doi.org/10.1109/IVS.2016.7535450

[12] Alfredo Cuzzocrea. 2015. Provenance research issues and challenges in the

big data era. Proceedings - International Computer Software and Applications
Conference 3 (2015), 684–686. https://doi.org/10.1109/COMPSAC.2015.345

[13] Susan B. Davidson and Juliana Freire. 2008. Provenance and Scientific Work-

flows: Challenges and Opportunities. In Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data (SIGMOD ’08). ACM, New York,

NY, USA, 1345–1350. https://doi.org/10.1145/1376616.1376772

[14] Wim De Pauw, Mihai LeŢia, Buğra Gedik, Henrique Andrade, Andy Frenkiel,

Michael Pfeifer, and Daby Sow. 2010. Visual Debugging for Stream Processing

Applications. In Runtime Verification, Howard Barringer, Ylies Falcone, Bernd

Finkbeiner, Klaus Havelund, Insup Lee, Gordon Pace, Grigore Roşu, Oleg Sokolsky,

and Nikolai Tillmann (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 18–

35.

[15] Juliana Freire, David Koop, Emanuele Santos, and Cláudio T. Silva. 2008. Prove-

nance for computational tasks: A survey. Computing in Science and Engineering
10, 3 (2008), 11–21. https://doi.org/10.1109/MCSE.2008.79

[16] Boris Glavic, Kyumars Sheykh Esmaili, Peter M Fischer, and Nesime Tatbul. 2014.

Efficient stream provenance via operator instrumentation. ACM Transactions on

Internet Technology (TOIT) 14, 1 (2014), 7.
[17] Paul Groth and Luc Moreau. 2013. PROV-Overview. An Overview of the PROV

Family of Documents. (April 2013). https://eprints.soton.ac.uk/356854/

[18] Vincenzo Gulisano. 2012. StreamCloud: An Elastic Parallel-Distributed Stream
Processing Engine. Ph.D. Dissertation. Universidad Politécnica de Madrid.

[19] Vincenzo Gulisano, Yiannis Nikolakopoulos, Daniel Cederman, Marina Papa-

triantafilou, and Philippas Tsigas. 2017. Efficient Data Streaming Multiway

Aggregation Through Concurrent Algorithmic Designs and New Abstract Data

Types. ACM Trans. Parallel Comput. 4, 2 (Oct. 2017), 11:1–11:28.
[20] Vincenzo Gulisano, Yiannis Nikolakopoulos, Marina Papatriantafilou, and Philip-

pas Tsigas. 2016. Scalejoin: A deterministic, disjoint-parallel and skew-resilient

stream join. IEEE Transactions on Big Data (2016), 1–1. https://doi.org/10.1109/

TBDATA.2016.2624274

[21] Melanie Herschel, Ralf Diestelkämper, and Houssem Ben Lahmar. 2017. A survey

on provenance: What for? What form? What from? VLDB Journal 26, 6 (2017),
881–906. https://doi.org/10.1007/s00778-017-0486-1

[22] Mohammad Rezwanul Huq, Andreas Wombacher, and Peter M.G. Apers. 2011.

Adaptive Inference of Fine-grained Data Provenance to Achieve High Accuracy at
Lower Storage Costs. IEEE Computer Society, USA, 202–209. https://doi.org/10.

1109/eScience.2011.36 eemcs-eprint-21400.

[23] J. . Hwang, M. Balazinska, A. Rasin, U. Cetintemel, M. Stonebraker, and S. Zdonik.

2005. High-availability algorithms for distributed stream processing. In 21st
International Conference on Data Engineering (ICDE’05). IEEE, Tokyo, Japan, 779–
790. https://doi.org/10.1109/ICDE.2005.72

[24] Matteo Interlandi, Kshitij Shah, Sai Deep Tetali, Muhammad Ali Gulzar, Se-

unghyun Yoo, Miryung Kim, Todd Millstein, and Tyson Condie. 2015. Titian:

Data provenance support in Spark. Proceedings of the VLDB Endowment 9, 3
(2015), 216–227.

[25] Yuanzhen Ji, Hongjin Zhou, Zbigniew Jerzak, Anisoara Nica, Gregor Hacken-

broich, and Christof Fetzer. 2015. Quality-Driven Continuous Query Execution

over Out-of-Order Data Streams. In Proceedings of the 2015 ACM SIGMOD Inter-
national Conference on Management of Data (SIGMOD ’15). ACM, New York, NY,

USA, 889–894. https://doi.org/10.1145/2723372.2735371

[26] Evangelia Kalyvianaki, Marco Fiscato, Theodoros Salonidis, and Peter Pietzuch.

2016. THEMIS: Fairness in Federated Stream Processing Under Overload. In

Proceedings of the 2016 International Conference on Management of Data (SIGMOD
’16). ACM, New York, NY, USA, 541–553. https://doi.org/10.1145/2882903.2882943

[27] liebre 2017. Liebre SPE. https://github.com/vincenzo-gulisano/Liebre.

[28] M. M. Michael. 2004. Hazard pointers: safe memory reclamation for lock-free

objects. IEEE Transactions on Parallel and Distributed Systems 15, 6 (June 2004),
491–504. https://doi.org/10.1109/TPDS.2004.8

[29] Odroid-XU4 2016. Odroid-XU4. http://www.hardkernel.com.

[30] Christopher Olston and Benjamin Reed. 2011. Inspector Gadget: A Framework for

CustomMonitoring and Debugging of Distributed Dataflows. In Proceedings of the
2011 ACM SIGMOD International Conference onManagement of Data (SIGMOD ’11).
ACM, New York, NY, USA, 1221–1224. https://doi.org/10.1145/1989323.1989459

[31] Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, and Andrew

Tomkins. 2008. Pig Latin: A Not-so-foreign Language for Data Processing. In

Proceedings of the 2008 ACM SIGMOD International Conference on Management of
Data (SIGMOD ’08). ACM, New York, NY, USA, 1099–1110. https://doi.org/10.

1145/1376616.1376726

[32] storm 2017. Apache Storm. http://storm.apache.org/.

[33] Håkan Sundell and Philippas Tsigas. 2005. Fast and Lock-Free Concurrent Priority

Queues for Multi-Thread Systems. J. Parallel and Distrib. Comput. 65, 5 (2005),
609–627.

[34] Nithya N. Vijayakumar and Beth Plale. 2006. Towards Low Overhead Provenance

Tracking in Near Real-Time Stream Filtering. In Provenance and Annotation
of Data, Luc Moreau and Ian Foster (Eds.). Springer Berlin Heidelberg, Berlin,

Heidelberg, 46–54.

[35] Ivan Walulya, Dimitris Palyvos-Giannas, Yiannis Nikolakopoulos, Vincenzo

Gulisano, Marina Papatriantafilou, and Philippas Tsigas. 2018. Viper: A mod-

ule for communication-layer determinism and scaling in low-latency stream

processing. Future Generation Computer Systems 88 (2018), 297–308.
[36] Min Wang, Marion Blount, John Davis, Archan Misra, and Daby Sow. 2007. A

Time-and-value Centric Provenance Model and Architecture for Medical Event

Streams. In Proceedings of the 1st ACM SIGMOBILE International Workshop on
Systems and Networking Support for Healthcare and Assisted Living Environments
(HealthNet ’07). ACM, New York, NY, USA, 95–100. https://doi.org/10.1145/

1248054.1248082

[37] Y. Richard Wang and Stuart E. Madnick. 1990. A Polygen Model for Het-

erogeneous Database Systems: The Source Tagging Perspective. In Proceed-
ings of the 16th International Conference on Very Large Data Bases (VLDB ’90).
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 519–538. http:

//dl.acm.org/citation.cfm?id=645916.758355

[38] Matei Zaharia, Reynold S Xin, PatrickWendell, Tathagata Das, Michael Armbrust,

Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J

Franklin, et al. 2016. Apache spark: a unified engine for big data processing.

Commun. ACM 59, 11 (2016), 56–65.

https://doi.org/10.14778/1687553.1687590
http://dl.acm.org/citation.cfm?id=1316689.1316732
https://doi.org/10.1145/1066157.1066160
https://doi.org/10.1145/1066157.1066160
https://doi.org/10.1145/2806416.2806426
https://doi.org/10.1145/2806416.2806426
https://doi.org/10.1561/1900000006
https://doi.org/10.1109/IVS.2016.7535450
https://doi.org/10.1109/COMPSAC.2015.345
https://doi.org/10.1145/1376616.1376772
https://doi.org/10.1109/MCSE.2008.79
https://eprints.soton.ac.uk/356854/
https://doi.org/10.1109/TBDATA.2016.2624274
https://doi.org/10.1109/TBDATA.2016.2624274
https://doi.org/10.1007/s00778-017-0486-1
https://doi.org/10.1109/eScience.2011.36
https://doi.org/10.1109/eScience.2011.36
https://doi.org/10.1109/ICDE.2005.72
https://doi.org/10.1145/2723372.2735371
https://doi.org/10.1145/2882903.2882943
https://doi.org/10.1109/TPDS.2004.8
http://www.hardkernel.com
https://doi.org/10.1145/1989323.1989459
https://doi.org/10.1145/1376616.1376726
https://doi.org/10.1145/1376616.1376726
https://doi.org/10.1145/1248054.1248082
https://doi.org/10.1145/1248054.1248082
http://dl.acm.org/citation.cfm?id=645916.758355
http://dl.acm.org/citation.cfm?id=645916.758355

	Abstract
	1 Introduction
	2 Preliminaries
	3 Problem definition
	4 Linking sink and source tuples
	4.1 GeneaLog's instrumented operators
	4.2 Traversal of the contribution graph

	5 Intra-process data provenance
	5.1 SU implementation using standard operators

	6 Inter-process data provenance
	6.1 MU implementation using standard operators

	7 Evaluation
	8 Related Work
	9 Conclusions and future work
	Acknowledgments
	References

