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ABSTRACT

Fine-grained data provenance in data streaming allows linking each
result tuple back to the source data that contributed to it, some-
thing beneficial for many applications (e.g., to find the conditions
triggering a security- or safety-related alert). Further, when data
transmission or storage has to be minimized, as in edge computing
and cyber-physical systems, it can help in identifying the source
data to be prioritized.

The memory and processing costs of fine-grained data prove-
nance, possibly afforded by high-end servers, can be prohibitive for
the resource-constrained devices deployed in edge computing and
cyber-physical systems. Motivated by this challenge, we present
GeneaLog, a novel fine-grained data provenance technique for data
streaming applications. Leveraging the logical dependencies of the
data, GeneaLog takes advantage of cross-layer properties of the
software stack and incurs a minimal, constant size per-tuple over-
head. Furthermore, it allows for a modular and efficient algorithmic
implementation using only standard data streaming operators. This
is particularly useful for distributed streaming applications since
the provenance processing can be executed at separate nodes, or-
thogonal to the data processing. We evaluate an implementation of
GeneaLog using vehicular and smart grid applications, confirming
it efficiently captures fine-grained provenance data with minimal
overhead.
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1 INTRODUCTION

Data streaming is a winning paradigm for applications that need
to process data through continuous queries, at appropriate levels
of edge, fog and cloud architectures in digitalized systems. Besides
possibilities for low latency, another critical purpose of stream pro-
cessing is to distill information into events, reducing the amount of
data to be maintained. When the events produced by a streaming ap-
plication refer to unusual or critical situations, it is then desirable to
keep the source data to trace, understand and deal with the cause of
the problems, to replay the query or to develop learning structures
for future situations and related purposes [3, 14]. This is enabled by
fine-grained data provenance, which allows linking back each output
(e.g., an alert in the presence of an accident [5]) with the source data
that leads to it (e.g., the position reports of the cars involved). As
also discussed in [16], this is essential for industry 4.0, smart cities,
vehicular networks, and other cyber-physical systems’ applications.
In the remainder of the text, we use the terms fine-grained data
provenance or simply data provenance interchangeably.

In state-of-the-art solutions, data provenance is achieved through
operator instrumentation that enriches the tuples with provenance
meta-data annotations [16]. These variable-length annotations are
then used to trace back the source tuples contributing to each output
event. For this to work, all source data must be stored temporarily,
later discarding those tuples that did not contribute to an output
event. Although several optimizations have been discussed for such
an approach (e.g., provenance compression), the disadvantages of
variable-length annotation-based techniques can become problem-
atic and introduce prohibitive storage overheads for applications
maintaining large states [36].

Challenges. Fine-grained data provenance is an intrinsically heavy
operation that bounds the performance of a given application to the
efficiency with which the data provenance information of the latter
is maintained. Our goal is to minimize the provenance overhead,
both for time-performance aspects (e.g., throughput and latency) as
well as for memory requirements (e.g., temporal storage). This is all
the more important in edge computing, due to the limited resources
of the employed devices, e.g., when the dozens of gigabytes of
data sensed every day by a modern vehicle [10] cannot be stored
(or transmitted to a dedicated storage unit) until each piece of
information is distinguished into contributing or non-contributing
to an event.

Contribution. We propose Genealog, a new technique and frame-
work for data provenance in deterministic streaming applications.
GeneaLog provides several major novelties:

e It relies on small, fixed-size annotations that work for all
standard data streaming operators, reducing the per-tuple
memory overhead incurred for provenance.
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o Itleverages the memory management of the process to distin-
guish source tuples that contribute to the application output
from the ones that do not, without requiring temporary stor-
age of all source data.

o It further allows for a modular and efficient algorithmic im-
plementation using only standard data streaming operators.
This is particularly useful for distributed streaming applica-
tions since the provenance processing can be (i) executed at
separate independent nodes, orthogonally to the data pro-
cessing, and (ii) parallelized using existing techniques avail-
able for standard streaming operators.

We show the correctness of GeneaLog and evaluate it in a chal-
lenging context, namely an edge-processing environment, with
applications for monitoring of unusual or critical situations such as
accidents and anomalies, with a variety of data rates and operators
in their queries.

We provide a fully implemented prototype of GeneaLog on top
of the Liebre Stream Processing Engine (SPE): a lightweight SPE
for edge-computing [27]. As we show in our evaluation, GeneaLog
overcomes state-of-the-art techniques making fine-grained data
provenance a reality for streaming application in edge computing
and cyber-physical systems.

The rest of the paper is organized as follows. We introduce
preliminary concepts in § 2. We provide a formal problem definition
in § 3 and present GeneaLog’s approach in § 4-6, evaluating it in
§ 7. We discuss related work in § 8 and conclude in § 9.

2 PRELIMINARIES

Streams and operators are the basic building blocks of a data stream-
ing continuous query. A stream is an unbounded sequence of tuples
sharing the same schema composed by attributes (ts, a1, ..., an)
(we refer to attributes ts and a; of tuple ¢ as t.ts and t.a;, respec-
tively). Attribute ¢.ts represents the time at which the tuple has
been created. In a query, source tuples are delivered by Sources, ana-
lyzed by a Directed Acyclic Graph (DAG) of operators which can
also produce new tuples (as described later in this section) and,
eventually, delivered as sink tuples to Sinks.

When the tuples of each source stream are fed to the opera-
tors of a query in timestamp order (either because Sources deliver
timestamp-sorted streams as in [6, 18, 26] or by leveraging sorting
techniques such as [25]) and each operator produces timestamp-
sorted output streams (merging in timestamp order its input tuples
if the latter are delivered by multiple input streams, as discussed
in [18-20, 35]) a query’s execution is deterministic. In a nutshell,
this is given by the fact that each processing step depends on the
notion of time carried by the tuples themselves (attribute ts) and is
affected neither by the latency incurred in transmitting tuples from
an operator to another operator nor by the interleaving of tuples
to an operator with multiple input streams. For the edge-related
monitoring applications motivating our work (§ 1), determinism
is crucial to identify the source data contributing to each output
event unambiguously. For this reason, we assume in the follow-
ing that the queries for which data provenance is provided run
deterministically. We refer to [18—20] for a detailed discussion on
determinism.
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Queries are run by being deployed at one or multiple SPE in-
stances. Existing SPEs use different naming conventions for such
instances (e.g., Worker for Apache Storm [32] and Task Manager for
Apache Flink [8]). Nonetheless, each SPE instance represents a sin-
gle process in which threads share memory but maintain the tuples
being processed in thread-local data structures, using queues to
communicate with other threads. As typical in modern applications,
we assume that the memory allocated to objects maintained by each
process is freed when such objects are no longer accessible (directly
or indirectly) by the processes’ threads (either by garbage collection
techniques or other memory reclamation techniques such as hazard
pointers [28, 33]). When a query is run by multiple SPE instances,
the latter can be located at the same physical node or distinct ones.

The standard operators provided by SPEs can be distinguished
into stateless and stateful. Stateless operators process input tuples
on a one-by-one basis. The standard stateless operators provided by
SPEs such as [8, 16, 18, 32] are:

Map which produces one or more output tuples for each input
tuple by selecting one or more of the input tuples’ attributes,
optionally applying functions to them.

Filter which is used to decide whether a certain tuple should be
forwarded or discarded based on a condition.

Multiplex which copies input tuples to multiple out streams.

Union which merges multiple input streams into a single output
stream. Since we assume operators enforce determinism, the
Union operator merges timestamp-sorted input streams into
a timestamp-sorted output stream, as discussed in [18, 20].

Differently from stateless operators, stateful operators output tu-
ples that depend on multiple input tuples. The standard stateful
operators provided by SPEs such as [8, 16, 18, 32] are:

Aggregate which maintains a sliding time-based window of size
WS and advance WA of the most recent input tuples and
aggregates them (e.g., with functions such as max, min or
sum) possibly defining one or more group-by attributes (from
the input tuples’ schema) to aggregate together only tuples
sharing the same value for these attributes.

Join which defines one left input stream (L) and one right input
stream (R), and produces an output tuple combining and/or
altering the attributes of tuples t; € L and tg € R for each
pair of tuples (t1, tr) satisfying a given predicate while not
being far apart more than a given window size WS (i.e.,
|t .ts — tg.ts| < WS).

It should be noted that once deployed at one or more SPE in-
stances, these operators are not necessarily mapped to dedicated
threads. E.g., when a query defines three consecutive Filter opera-
tors, their conditions can be checked at the same time by a single
thread chaining the operators, as done by [8], rather than by three
dedicated threads whose per-tuple communication costs could be
higher than the processing ones. Similarly, the semantics of differ-
ent operators could be combined, for instance defining a routing
operator that forwards input tuples to one or more output streams
based on a set of conditions (i.e., by combining a Multiplex and sev-
eral Filter operators). We clarify this to highlight that, by discussing
the standard operators provided by an SPE rather than ad-hoc ones,
our contribution holds even when the semantics of such standard
operators are combined.
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Source ts |car_id|speed|pos
08:00:01] a 0 X
08:00:02] b 55 | Y
08:00:31] a 0 [ X
§ 08:00:32] c 0 |[Z
Filter 08:01:01] a 0 | X
speed==0 08:01:31] a 0 | X
r_id/speed|pos|
Aggregate a 0 X
count(),distinct(pos) a 0 X
WS=120 sec, WA=30 sec [ ; Z
group-by=car_id a 0 §
a 0
Filter r_id|count|dist_pos
count==4 AND dist_pos==1 838888 ?: 4]1- %
. ts  |car_id/count|dist_pos|
Sink 08:00:00] a 4 1

Figure 1: Sample continuous query.

In the remainder, together with stateless and stateful operators,
we assume that queries can include one or more:

Source creating the source tuples fed to the query.

Sink receiving the sink tuples produced by the query.

Send and Receive operators, which can be used to transmit and
receive tuples between two distinct processes (potentially
deployed at distinct nodes).

Figure 1 presents a sample query that detects broken-down cars
on highways (based on the Linear Road benchmark [5], further
discussed in § 7). The source tuples are position reports, emitted
by each car every 30 seconds, carrying information about its speed
and position. A car is considered stopped if at least four consecutive
position reports report zero speed and the same position. Three op-
erators compose the query. First, a Filter forwards only the position
reports that have zero speed. Subsequently, an Aggregate operator
aggregates the position reports of each car individually over a time
window of size and advance of 120 and 30 seconds, respectively. If
four tuples in a window have the same position, the output tuple
produced by the Aggregate is forwarded by a Filter.

3 PROBLEM DEFINITION

We first define the contributes-relation between source and sink
tuples, setting the basis of fine-grained data provenance.

Definition 3.1. We say that input tuple fy to an operator OP
contributes to an output tuple toyt of OP, if:

i OP is a Filter, Union or Receive and toyr = tin
ii OP is a Map, Send or a Multiplex and toyr is created upon
the processing of t7y!
iii OP is an Aggregate and if ¢y is in the window of tuples
whose aggregation results in the creation of toyr
iv. OP is a Join and f7y is one of the tuples in a pair of tuples
within time distance WS for which the Join predicate holds.

This relation is transitive and hence generalized in the context of
a query as follows: a tuple tsoyrcr of a source stream contributes
to a tuple tgNk of a sink stream, if in the DAG of operators in the
query there is a directed path of topologically-sorted operators

!The difference between type (i) and type (i) operators in this context is that the
former forward tuples, while the latter create new ones (even if sometimes they are
identical).
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Source car_idspeed|pos|
a 0 X
b 55 | Y
a 0 X
" G 0 [Z
Filter a 0 X
speed==0 a 0 X
car_id|speed|pos|
Aggregate a X k—
count(),distinct(pos) a 0 X —
WS=120 sec, WA=30 sec C 0 Z
group-by=car_id a ; §
a 0
ilter car_id|count/dist_pos|
count==4 AND dist_pos==1 828888 g 4]1- %
) ts |car_id/count|dist_pos|
Sink 08:00:00[ a 4 1

Figure 2: Sample query from Figure 1 with additional red
arrows showing the contribution graph of the sink tuple.

OPy,...,0OP;,...,OPy, starting with a Source and ending with a
Sink, and a sequence of tuples ty = tSOURCE - - - » ti—1» tis - - -» bk =
tsiNk, such that for alli = 1,...,k, t;—; and t; are input and output
tuples of OP;, respectively, and t;—; directly contributes to t;.

A solution to fine-grained data provenance must, for each sink
tuple tsiNg generated by a query, associate all the source tuples
that contribute to tgjNg. In the sample query of Figure 1, the source
tuples contributing to the sink tuple (08:00:00, a, 4, 1) are the tuples
(08:00:01, a, 0, X), (08:00:31, a, 0, X), (08:01:01, a, 0, X) and (08:01:31, a,
0, X). This can easily be verified by retracing the process, as shown
in Figure 2.

Besides correctness and efficiency (in time and space), the addi-
tional requirements to be fulfilled for fine-grained data provenance
to be feasible in edge streaming applications are:

C1 A fixed-size per-tuple overhead when metadata is used to
maintain provenance information.

C2 Avoid maintaining (in memory or storage) all source tuples
to later differentiate them between contributing and non
contributing to sink tuples.

C3 The possibility of implementing the provenance semantics by
employing standard streaming operators, being thus able to
leverage existing distribution and parallelization techniques
for both the analysis run by a given streaming application
and the analysis run to provide fine-grained data provenance
for the latter.

For ease of exposition, we frame our discussion to a case in which
a single query is being deployed to one or multiple SPE instances. It
is nonetheless trivial to extend the discussion to scenarios in which
more queries are defined.

4 LINKING SINK AND SOURCE TUPLES

In this section, we discuss GeneaLog’s central idea, which allows it
to maintain information about source tuples contributing to sink
tuples with fixed-size per-tuple metadata. We describe in detail how
provenance is provided for centralized and distributed deployments
in § 5 and § 6, respectively.

The definition of the contributes relation (Def. 3.1), implies a con-
tribution graph that connects each source tuple to the sink tuple(s)
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it contributes to. Figure 2 shows the contribution graph for the ex-
ample of Figure 1. An approach for maintaining such a contribution
graph, proposed by [16], is to assign a unique id to each tuple and
to enrich each tuple with meta-data that carries over the ids of the
source tuples contributing to it. In this way, contribution graphs
can be thought of as trees rooted at sink tuples with one leaf per
contributing source tuple. This approach, nevertheless, conflicts
with the motivating challenges discussed in § 3: (i) the list of ids
carried by each tuple can grow arbitrarily and (ii) all source tuples
need to be maintained (in memory or disk) until they are distin-
guished into contributing or not by inspecting the ids carried by
sink tuples.

As we show in the following, Genealog’s approach can solve
both shortcomings, thus addressing challenge C1 (§ 3). For Genea-
Log, the additional meta-data of each tuple consists of four meta-
attributes: Type (T), Upstreamy (Uy), Upstreamy (Uz) and Next (N).
For tuple ¢, the meta-attribute ¢.T specifies which operator creates
the tuple. The value of t.T can be SOURCE, MAP, MULTIPLEX,
JOIN, AGGREGATE and REMOTE. It should be noticed that no
values are defined for operators that forward (instead of creating)
tuples (e.g., the Filter operator), as we further elaborate in § 4.1.
Meta-attributes t.Uy, t.Uz and ¢t.N are memory pointers that can be
used to access other tuples maintained by the streaming application.
In a nutshell, they are used to (i) link each output tuple produced
by an operator to the input tuples, processed by such operator, that
contribute to it, and (ii) to traverse the resulting contribution-graph
of each sink tuple, back to the source tuples contributing to it. We
describe in detail in the following how these meta-attributes are set
for the standard operators (§ 4.1) and how the contribution graph
is traversed (§ 4.2).

4.1 Genealog’s instrumented operators

Here we show how the meta-attributes T, U;, Uz and N are used by
the instrumented Sources and operators listed in § 2, to maintain
the contribution graphs connecting source tuples to sink tuples.
Similarly to [16], we rely on instrumented operators and Sources
that, besides running the analysis defined by their semantics can
(i) access and modify the meta-data used for data provenance and
(if) use such metadata to create tuples that can be then forwarded
to other operators in the query. The details of each instrumented
operator are given here:

Map Multiplexer Join Aggregate
Ui -
_z";> 3 ferifa]

Figure 3: Visual representation of how the meta-attributes
(pointers) Uj, U, and N are set by the instrumented Map, Ag-
gregate and Join operators. For simplicity, we show for each
operator only the meta-attributes that are set by it, thus ig-
noring dangling pointers.
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Source car_idspeed|pos NN N
08 a | 0 X *, uf
ilter 8 a 0 " ,
L o = Sink tuples
speed==0 08 a - = X contribution graph
car_idispeed|pos| |
Aggregate N a 0 X 2
count(),distinct(pos) B a 0 X
WS=120 sec, WA=30sec I\ C 0 Z 2 U:
group-by=car_id N: g E § < U : %U[
) car_id|count|dist_pos '
Filter a a 1 i H
count==4 AND dist_pos==1 c 1 1 | =
_ car_id|countdist_pos|
Sink 08:00:00] a 4 1

Figure 4: Sample query and execution from Figure 1 show-
ing meta-attributes Uj, U; and N as set by GeneaLog’s instru-
mented operators.

Source. The Source of a query creates tuples that do not depend on
other tuples. For this reason, GeneaLog’s instrumented Source sets
the meta-attribute T to SOURCE but does not set pointers Uj, Uz
and N.

Map. The Map operator creates one or more output tuples for each
input tuple it processes. With GeneaLog’s instrumented Map, each
output tuple tp points to the input tuple t; that contributes to it
using the meta-attribute U;, hence to.U; = t7, as also shown in
Figure 3. Additionally, attribute T is set to MAP.

Multiplex. The Multiplex operator creates a copy of each input tuple
it processes for each one of its output streams. With GeneaLog’s
instrumented Multiplex, each output tuple tp points to the input
tuple t; that contributes to it using the meta-attribute Uy, hence
to.Ur = ty, as also shown in Figure 3. Additionally, attribute T is
set to MULTIPLEX.

Join. As discussed in § 2, each output tuple to produced by a Join op-
erator has exactly two contributing input tuples tg and ts. Without
loss of generality, assuming Tg is more recent than Ts, GenealLog’s
instrumented Join operator sets to.T to JOIN as well as tp.U; = Tg
and to.Uy = T, as shown in Figure 3.

Aggregate. For the Aggregate, multiple input tuples can contribute
to one output tuple. Based on Definition 3.1, all the input tuples
that are part of the same window (and possibly group-by value)
contribute to the output tuple produced when the window is full. If
t1,...,ty are the input tuples that contribute to the output tuple tp
(being t; the earliest tuple), GeneaLog’s instrumented Aggregate
operator sets tg.U; = t, and tp.Uy = t;. Moreover, if n > 1, it
also sets t;.N = tj41 fori = 1,...,n — 1. Finally, it sets tp.T to
AGGREGATE, as shown in Figure 3.

Filter and Union. Since Filter and Union operators do not produce
new tuples, but rather forward existing ones across the query’s
streams, no instrumentation is defined for them.

Send and Receive. These operators are used to send tuples across
distinct processes (possibly running at different physical nodes).
From a semantics perspective, they do not create new tuples but
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rather forward existing ones across the streams of a query. From an
implementation perspective, they indeed create new memory ob-
jects when sharing tuples across processes (optionally transmitting
them through the network). The Send operator is instrumented
so that the meta-attribute T is set to REMOTE if the latter is not
SOURCE, which allows distinguishing, locally in each process, tu-
ples produced by operators deployed at other processes.

Figure 4 shows how the meta-attributes U, U, and N are set for
the sample query and execution presented in Figure 1 by Genea-
Log’s instrumented operators. Moreover, it also shows the resulting
contribution graph of each sink tuple.

4.2 Traversal of the contribution graph

Once the meta-attributes defined by GeneaLog are added and set
according to the description of § 4.1, the contribution graph of
each sink tuple can be traversed back to its contributing tuples, be
them source tuples (when attribute T is set to SOURCE) or tuples
produced by operators deployed at other instances (when attribute
T is set to REMOTE).

It should be noticed that the meta-attribute Uj (for tuples of type
MAP and MULTIPLEX) together with U, (for tuples of type JOIN)
allow traversing all their contributing tuples. For tuples of type
AGGREGATE, on the other hand, the input tuples contributing to
a given output tuple can be traversed using the meta-attribute N
starting from the contributing tuple pointed by Uz and ending at
the contributing tuple pointed by Uj (inclusive). Listing 1 presents
the traversal algorithm, which implements a breadth-first search of
the contribution graph of a tuple.

Set findProvenance (root):

Set provenance

Set visited

Queue q

q.addLast(root)

(!'q.isEmpty () ):

Tuple t = q.removeFirst ()

switch (t.type):

case SOURCE or REMOTE:
result.add(t)

case MAP or MULTIPLEX:

while

enqueuelfNotVisited (t.Ul, q, visited)
case JOIN:
enqueuelfNotVisited (t.Ul, q, visited)
enqueuelfNotVisited (t.U2, q, visited)
break;
case AGGREGATE:
enqueuelfNotVisited (t.U2, q, visited)

Tuple temp = t.U2.N;
while (temp != null && temp != t.U1)

enqueuelfNotVisited (temp, q, visited)
temp = temp.N;
enqueuelfNotVisited (t.Ul, q, visited)
return result;
void enqueuelfNotVisited (tuple, queue, visited):

if (!visited.contains(tuple)):
visited .add(t)
queue.addLast(t)

Listing 1: Contribution graph traversal

To facilitate the presentation in the remainder, we introduce the
term originating tuple in the following definition.
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Definition 4.1. Tuple ¢’ is an originating tuple of t if t’ is returned
by the provenance method in Listing 1 as a tuple contributing to t.

Using this definition, before proceeding in more detail with ex-
planations about how provenance is guaranteed while meeting the
challenges discussed in § 3, let us observe that when a query is
entirely deployed within one process, all the originating tuples of a
sink tuple are of type SOURCE; on the other hand, they can also be
of type REMOTE when multiple SPE instances run the operators
of the query.

5 INTRA-PROCESS DATA PROVENANCE

Given the instrumented operators and the contribution graph tra-
versal approach discussed in § 4, we show here how challenges
C2 and C3 presented in § 3 (i.e., to avoid maintaining all source
tuples and to allow for provenance analysis to be implemented
utilizing standard operators) are addressed by GeneaLog, when all
the operators of a query are deployed within the process (i.e., the
same SPE instance).

With respect to challenge C2, it can be noticed that by using
memory pointers and by assuming, as discussed in § 2, that the
memory used by objects such as tuples is freed when such objects
are no longer accessible (directly or indirectly) by the processes’
threads, GeneaLog can access all the information it needs, without
maintaining or storing source tuples; this is so since the memory
used by them will be referenced (and thus not reclaimed) as long as
a reference to the sink tuple they contribute to exists. On the other
hand, as soon as a tuple no longer contributes to any output or sink
tuple, it will be dereferenced, and its memory can be reclaimed.

To facilitate the explanation of how GeneaLog addresses chal-
lenge C3, we first introduce an auxiliary term:

Definition 5.1. Stream U is the unfolded stream obtained from
stream S if each tuple t € S is replaced by its originating tuples (see
Def. 4.1) combined with ¢’s attributes.

A) B)
Single-stream
Unfolder Si ¥ X So

S S
sl
Su Map
‘ M}

Figure 5: SU operator (A) and implementation of its seman-
tics using the standard operators (B).

Multiplexer

In the following, by considering the existence of a single-stream
unfolder operator, whose semantics are described in Definition 5.2,
we show that fine-grained data provenance can be achieved (The-
orem 5.3), by enriching the query with such an operator. Next, in
§ 5.1, we show that the semantics of such a streaming operator can
indeed be achieved utilizing the instrumented standard operators
described in § 3, thus addressing challenge C3. Moreover, we pre-
pare the ground for the explanation of GeneaLog’s inter-process
data provenance, later provided in § 6.

Definition 5.2. The SU (single-stream unfolder) operator (Fig-
ure 5A) has one input stream Sy and produces two output streams:
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the first one (Sp) is an exact copy of Sy and the second one (U) is
the unfolded stream of Sj.

THEOREM 5.3. A query in which an additional SU operator is added
before each Sink (with So feeding the Sink) provides fine-grained data
provenance through U.

Proor. Since all the operators of the query are deployed within
the same process, the unfolded stream U of each SU operator, for the
Sink to which the SU operator is connected, contains originating
tuples of type SOURCE only, and thus delivers a stream in which
each sink tuple is combined with all the source tuples contributing
to it, thus providing fine-grained data provenance. O

5.1 SU implementation using standard
operators

Figure 5B shows how the semantics of the SU operator can be de-
fined utilizing the instrumented operators provided by GeneaLog.
As discussed in § 2, we stress that it is not necessary to map each of
these operators to a dedicated thread (communicating with other
threads and operators through shared queues). Efficient implemen-
tation can assign these operators to the same thread using chaining
(e.g., as possible in Apache Flink [8]) or by implementing their
semantics in a single user-defined operator.

As shown in Figure 5B, first a Multiplex operator can be used
to duplicate the tuples of the input stream Sy and forward them to
streams Sp (which will deliver S;’s tuples to the following Sink)
and Sp;. Then, a Map operator can be used, to unfold Sys to U by
applying the findProvenance function (Listing 1) and produce, for
each sink tuple tgiNg, a tuple carrying tgvg's attributes and the
attributes of each originating source tuple of tgng.

6 INTER-PROCESS DATA PROVENANCE

In this section, we extend the provenance technique discussed in § 5
to setups where the operators of a query are deployed to multiple
SPE instances.

A first observation we can make in this case is that relying solely
on the process memory management to keep references to source
tuples that contribute to sink tuples with the help of pointers is not
sufficient since pointers assigned to tuples that are later forwarded
across processes and dereferenced would be lost. Before explaining
how GeneaLog’s approach provides inter-process provenance, we
first introduce some further notation and terms. We argue about
correctness along with the presentation of our method, following
the methodology of the previous section. Le., first, by considering
the existence of an additional (multi-stream unfolder) streaming
operator, whose semantics are described in Definition 6.4, we show
that fine-grained data provenance can be achieved. Next, we show
that the semantics of this streaming operator can be implemented by
composing standard operators described in § 3. In this way, besides
proving correctness, we explain how GeneaLog meets challenge
C3 (§ 3) in inter-process data provenance as well.

We refer to the n SPE instances in which a query is deployed
as V = Vj,...,V,. We say that V; is a source SPE instance if the
operators deployed inside it are fed by Sources also deployed inside
it, but not from other SPE instances (i.e., if no Receive operators
are deployed at V;). We say V; is a sink SPE instance if Sinks are
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deployed in it, and V; does not contain Send operators. Finally, we
say V; is an intermediate SPE instance if it is neither a source nor a
sink SPE instance. The ordering value of V; is defined as the longest
path in the graph of SPE instances from a source SPE instance to
Vi. Let V4 denote the set of SPE instances having ordering value g.

For inter-processing provenance, we also assume tuples’ constant-
size meta-data is enriched by one additional meta-attribute ID,
which is a unique id for each tuple?. We also use the terms de-
livering stream, unfolded delivering stream and complete unfolded
delivering stream, defined here:

Definition 6.1. Stream S is a delivering stream if it feeds a Sink or
is produced by a Send operator.

Definition 6.2. Stream U is the unfolded delivering stream ob-
tained from the delivering stream S if each tuple ¢t € S is replaced
by its originating tuples (see Def. 4.1) concatenated with t’s at-
tributes. For each tuple ¢’ in U, we refer to the originating tuple’s
attributes ID and ts that tuple ¢’ carries as t".tsp and t’.IDg.

Definition 6.3. Stream U is a completely unfolded delivering stream
if all its tuples are of type SOURCE.

The additional operator, called multi-stream unfolder (MU), is
defined below and presented in Figure 6.

Definition 6.4. The MU (multi-stream unfolder) operator defines
multiple unfolded delivering streams (see Def. 6) as input streams:
(i) one derived and (ii) an arbitrary number of upstream unfolded
delivering streams. Additionally, it defines one output stream. Each
tuple ¢ in the derived stream is forwarded to the output stream if
it is of type SOURCE. Alternatively, it is replaced by the sequence
of tuples t1,. .., ti,...,ty found in any upstream stream for which
t;.ID = t.ID(; this sequence is then forwarded to the output stream.

Multi-stream
Unfolder

Upstream streams

Output stream

Derived stream

Figure 6: Representation of the input and output streams de-
fined by the MU operator (Def. 6.4)

Finally, assuming that the SU operator presented in § 5 can be
used to produce unfolded delivering stream (the additional setting of
attributes ts and ID can be done by the Map operator in Figure 5),
we can state the following theorem, that builds on complementing
queries with SU and MU operators.

THEOREM 6.5. Given a query Q, let us define a query Qg that is
composed by the same operators defined by Q, plus (i) one SU operator
preceding each Send operator and each Sink, (ii) one MU operator
for each Send operator ¢ Vg and for each Sink ¢ V¢ and (iii) any
additional number of Send / Receive operator pairs according to how
Qg ’s extra operators are deployed.

Let us connect these SU and MU operators so that:

2For instance, composed by the unique id of the Source or operator producing the
tuple and a sequential counter, as done by [16].
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Figure 7: Distributed deployment of the sample query (Fig-
ure 1) with SU and MU operators for data provenance and
an additional Sink K to persist provenance data.

o each stream S; feeding a Send operator or a Sink is unfolded
into U; by the corresponding SU;,

e each stream U; € Vj|j > 0 is fed as the derived stream to the
corresponding MUj,

o each stream U; produced by an SU; that precedes a Send op-
erator is fed as an upstream stream to the MU operator of the
instance to which S; is delivered.

Then, Qg provides fine-grained data provenance for each Sink K in
Q through: (i) the U; stream produced by the SU; preceding K (if
K € V) or (ii) the stream Oy, generated by the MU} associated to K.

ProoF. Any unfolded delivering stream U; from an SPE instance
Vj in Vg is complete since, for each tuple t € Uj, t’s contributing
tuples are provided by the Sources deployed at V;. Similarly, any
stream O; produced by an MU; operator from an instance V; in
V1 is also complete since, for each tuple t € O;, t’s contributing
tuples can only be provided by Sources deployed at V; or tuples
forwarded by instances in V, which are all of type SOURCE and
can be found in the upstream streams of MU;. By induction, any
stream O; produced by an MU; operator from an instance V; in
V; is also complete since, for each tuple t € O;, t’s contributing
tuples can only be provided by Sources deployed at V; or tuples
forwarded by the output streams of MU operators from instances in
Vm|m < 1, which are all of type SOURCE and can be found in the
upstream streams of MUj;. Delivering streams connected to Sinks
inVj|j > 1 are thus unfolded by an SU operator and then fed as
derived streams to MU operators that produce a sequence of tuples
in which each sink tuple is combined with all the source tuples
contributing to it, thus providing fine-grained data provenance. O

Figure 7 shows how SU and MU operators are added to the
query presented in Figure 1 when its operators are deployed at
three distinct SPE instances. For simplicity, Figure 7 and the figures
shown in the remainder for query deployed at multiple processes do
not show explicitly Send and Receive operators. In the following, we
show how the MU operator can be implemented using GeneaLog’s
instrumented operators.

6.1 MU implementation using standard
operators

The key operator needed to implement the semantics of the MU
operator (Def. 6.4) is a Join. Considering the SPE ordering values
as defined in this section, the Join in MU at a particular at each
ordering value level processes unfolded streams of the previous
and the current level of SPE instances, to extract useful information
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to be fed to downstream SPEs, in order to generate the source-
and-sink tuple pairs belonging to the contributes relation (Def. 3.1).
Figure 8 shows how the MU operator can be constructed, utilizing
the standard operators described in § 2. For ease of explanation,
let us first assume that the MU operator is fed by exactly one
upstream stream Sp and by a single derived stream St, that does
not contain any SOURCE tuples. In order to produce the output
unfolded stream, the core semantics of the MU operator can be
implemented using a Join operator, the predicate of which is used
to match a tuple tp € Sp and t7 € St if tp.ID == t7.IDp and
whose window size is set to the sum of the window sizes of the
stateful operators deployed at the instance producing St; the latter
guarantees no tuple ¢p is purged by the Join before a tuple t7 for
which the Join’s predicate hold has been processed.

As shown in the figure, if the MU operator needs to deal with
multiple delivering unfolded upstream-streams, then a Union oper-
ator can be used to merge their tuples deterministically into one
stream. If, moreover, tuples of type SOURCE can be found in ST, a
set of operators including one Multiplex operator, two Filter opera-
tors, and an additional Union operator can be used: as shown in the
figure, the Multiplex operator is used to feed each tuple delivered
by St into the two Filter operators F; and Fz. F; forwards tuples
that are not of type SOURCE to the Join operator while F; forwards
tuples of type SOURCE to the Union operator, which eventually
merges them with the tuples produced by the Join operator into its
output stream.

Multiplexer

Upstream

streams Derived stream

Filter ! Optional

| operators

i needed only when
| SOURCE tuples

| exist in the

| derived stream

Optional operator
needed only when two or
more upstream

streams exist

|
i
|
i

Output stream

Figure 8: Implementation of the MU operator’s semantics
using the standard operators defined in § 2.

7 EVALUATION

In this section, we evaluate GeneaLog’s performance. We first intro-
duce the hardware and software setup. Subsequently, we present
the different use cases we take into account. We then discuss the
performance observed for these use cases when no fine-grained data
provenance is maintained and when GeneaLog provenance capture
is active, for deployments to a single process (to evaluate Genea-
Log’s intra-process technique, § 5) and to multiple processes run by
different physical nodes (to evaluate GeneaLog’s inter-process tech-
nique, § 6). For both deployments, we also compare our algorithm
with an implementation of Ariadne, the current state-of-the-art in
eager streaming data provenance [16] that is as general as ours and
is targeted for use in stream processing systems. Finally, we provide
a detailed analysis of the cost of traversing the contribution graph
in each process in the intra-process and inter-process scenarios.
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Hardware and software setup. For the hardware to resemble the
embedded devices deployed in modern cyber-physical systems, the
experiments are conducted on a network of 3 Odroid-XU4 [29]
(or simply Odroid in the remainder), equipped with a Samsung
Exynos5422 Cortex-A15 2Ghz and Cortex-A7 Octa core CPUs and
with 2 GB of memory. The Odroids are running a variant of Ubuntu
16.04.4 LTS and are using Java HotSpot(TM) Client VM 1.8.0_161-
b12. They are connected to a 100Mbps switch. The experiments are
performed using the lightweight Liebre SPE [27].

To evaluate GeneaLog, we consider the throughput (the average
number of tuples per second that query can process), the latency
(the average time interleaving the production of each sink tuple
and the reception of the latest source tuple contributing to it), the
memory footprint (the average and maximum size of memory used
by the process running a given query) and the traversal time of the
contribution graph of each sink tuple.

The provenance information of each sink tuple is calculated
using the algorithm in Listing 1 and stored on disk. Note that in
our experiments the total size of the provenance information is
negligible compared to that of the source data (ranging from 0.003%
to 0.5% of the latter). Although beyond the scope of our evaluation,
each sink tuple’s provenance information could also be forwarded
to the end user (rather than stored) given its negligible impact on
the overall network traffic. Experiments are at least six minutes
long. Statistics are taken after a warm-up phase and before the cool
down phase. Results are averaged over five runs and present the
95% confidence interval.

To compare with the state-of-the-art technique of Ariadne, we
opted for a new implementation since the published one is based
on the Borealis SPE [1], discontinued since 2008. As discussed in
§ 4, this technique, which we refer to as the baseline BL, annotates
intermediate tuples with variable-length provenance metadata. In
order to retrieve the actual provenance result, source streams are
temporarily maintained and later joined with the annotated output
streams.
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Figure 9: A) Query Q. B) Sink tuples’ contribution graph,
with 8 input tuples. C) Distributed deployment.
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Figure 10: A) Query Qs. B) Sink tuples’ contribution graph,
with 192 input tuples on average. C) Distributed deploy-
ment.

Use cases. We test GeneaLog with two queries from the vehicular
network domain (using the Linear Road benchmark [5]) and two
queries implementing real use case from a real-world Smart Grid
infrastructure. As we discuss in the following, all the standard
operators presented in § 2 are used by these queries. Also, the
different queries are chosen to observe the overhead incurred by
GenealLog for different amounts of information (e.g., contribution
graph size) needed to maintain provenance information.

(Q1) - Detecting broken-down cars (Linear Road benchmark). The
first use case we test is the one presented in § 2 (Figure 1), based on
the Linear Road benchmark [5], an established standard to study
SPEs’ performance. It simulates vehicular traffic on a number of
linear expressways, each composed of predefined segments. This
is a representative example where stream processing in fog/edge
architectures can result in extra benefits compared to processing
in the cloud, as discussed in [11]. The generated data simulates
the traffic of one highway since its volume is adequate for our
evaluation.

As discussed in § 2, position reports are forwarded every 30 sec-
onds by the cars traveling in the highway and carry the attributes?
(ts, car_id, speed, position). A car is stopped if at least four consec-
utive position reports from the same car report zero speed and the
same position.

(Q2) - Detecting accidents (Linear Road benchmark) - Figure 9. This
second query extends Q1 to detect accidents. In the Linear Road
benchmark, an accident is detected if at least two broken-down
cars are found in the same position at the same time. This query
defines the same operators as Q1 plus an additional Aggregate
and an additional Filter operator. The former aggregates using the

3Some unrelated attributes have been omitted to preserve clarity. We also use a single
position attribute for ease of exposition (in the benchmark, positions are given by
several attributes).

4With the Aggregate operator producing tuples with an extra last_pos field carrying
the last position reported by each car.
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position as the group-by and a window of size and advance of 30
seconds. The resulting tuple carries the number of stopped vehicles
observed for each position in the same time window. Subsequently,
the Filter operator forwards only the tuples carrying a counter that
is equal to or greater than 2. As for provenance, 8 source tuples
contribute to each sink tuple.

(Q3) - Long-term blackout detection (Smart Grid) - Figure 10. This
query aims at detecting blackouts in Smart Grid systems. Source
tuples are measurements forwarded by smart meters every hour,
with schema (ts, meter_id, consumption). Source data is grouped
by meter, and the consumption is summed throughout each day by
an Aggregate operator. A Filter forwards tuples with zero consump-
tion to a second Aggregate, which counts them with a window of
size and advance equal to one day. If there are more than seven me-
ters which reported zero consumption for a whole day, then an alert
is raised by the system. In this case, 192 source tuples contribute to
each sink tuple on average.

(Q4) - Anomaly detection (Smart Grid) - Figure 11. This query aims at
detecting faulty meters that show a suspiciously high consumption
in correspondence with the beginning of a new day (i.e., reporting
such value at midnight). Such behavior usually indicates meters are
compensating for missing reported consumption about the previ-
ous day. The source tuples have the same schema as in Q3 and once
again are forwarded every hour. The source stream is broken into
two identical streams. The first one is sent to an Aggregate that is
similar to the one in Q3, grouping by meter and calculating the daily
consumption. The second stream is forwarded to a Filter which
allows only the measurements done at midnight to pass through.
The results of the Filter and the Aggregate with the same meter_id
are joined using a window of one hour, and the consumption of the
output is set as the absolute difference between the two inputs. Fi-
nally, another Filter produces an alert if the consumption difference
is higher than a specified threshold. 24 source tuples contribute to
each sink tuple.
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Figure 11: A) Query Q4. B) Sink tuples’ contribution graph,
with 24 input tuples. C) Distributed deployment.
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Figure 12: Evaluation of the impact of provenance compu-
tation for the intra-process provenance, when the use cases
are deployed at a single process.

Intra-process performance. The results of the experimental evalua-
tion of intra-process provenance are presented in Figure 12. Each
row of the graph refers to one query, and each column is a perfor-
mance metric. As discussed later in this section, the performance
degradation in the case of the baseline is so severe that we failed
to record useful data for latency and memory consumption, thus
forcing us to display only the throughput values.

In both the Linear Road Benchmark queries (Q1 and Qz2), the
throughput and latency overhead of GeneaLog’s fine-grained prove-
nance is less than 4%. The reduction in throughput is around 2000
t/s in both cases, and there is an increase in latency by 97 ms and 210
ms respectively. The change in the average memory consumption
is less than 500 KB.

Results are similar for the Smart Grid queries. The blackout detec-
tion query (Q3) has a decrease of about 7% or 4680 t/s in throughput,
and an increase of approximately 33 ms in latency when GeneaLog
is enabled. Moreover, the actual memory consumed in general is
so small that in the second query the maximum memory usage
drops slightly (we believe this is because of the different behavior
of Java’s garbage collector). In the anomaly detection query (Q4)
the throughput drops by 2590 t/s and the latency increases by about
15 ms. This is the case for which we observe the higher increase in
memory consumption, 66%. However, the actual memory consumed
remains very low, less than 2% of the total available memory of
the device. The overhead in these two queries is slightly higher,
which is expected since (i) they produce a more substantial number
of events, and thus a higher volume of provenance data (almost
two orders of magnitude more than the Linear Road Benchmark
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queries) and (ii) their windows are larger and thus contain more
tuples. The effect of windowing in memory consumption is more
pronounced in Q4 since it uses two consecutive windowed opera-
tions and tuples that are candidates for provenance need to spend
more time in memory until they can be safely garbage collected.

As far as the baseline is concerned, in all the queries except for
Q4, its average throughput is an order of magnitude lower than
GeneaLog. The bottleneck is given by BL’s high usage of memory.
Further, we observed that the throughput measured for BL keeps
decreasing as the experiment progresses, reaching values close
to zero, thus indicating that the processes are overloaded. Due to
this, we do not report BL’s data related to memory consumption
(since this is always more than one order of magnitude higher,
approximately) nor to latency (since it was not possible to get an
accurate representation of the latency based on the limited number
of sink tuples produced by the queries).
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Figure 13: Evaluation of the impact of provenance compu-
tation for inter-process provenance, when the use cases are
deployed at distinct processes and physical nodes.

Inter-process performance. Figure 13 presents the results of the
same experiments for the inter-process case. In all distributed de-
ployments, we use two Odroids for data processing and one more
for recording the final provenance stream. Note that the memory
consumption is measured as the sum of the consumption of each
process. While the memory consumption in the processing nodes
remains almost identical, the total memory consumption shown
in the graphs is always higher due to the additional node. The
memory consumption of the additional node is the darker-colored
part at the top of the bars. As shown in the figures, the difference
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Figure 14: Time required to traverse the contribution graph
for each output tuple.

in memory consumption is mainly given by the additional node’s
memory consumption.

The deployment of the two Linear Road queries (Q1 and Q2) is
shown in Figures 7 and 9. The impact of GeneaLog’s provenance
in throughput and latency is less than 3%. More specifically, in
the stopped vehicles detection query (Q1), there is a decrease in
throughput of 1032 t/s and an increase in latency of 50 ms whereas
these numbers for the accident detection (Q2) are 1483 t/s and 124
ms respectively. The memory consumption on the two nodes that
process the actual data is almost identical, but as mentioned above,
the cost of adding the additional node for provenance computation
is reflected by the higher memory requirements.

The Smart Grid queries are deployed as in Figures 10 and 11.
For the blackout detection query (Q3) there is a drop of 7.4% in
throughput (-5000 t/s) and an increase of approximately 9.6% (+42
ms) in latency when GeneaLog is active. For the anomaly detection
query (Q4) the impact is higher, around 5100 t/s (-10.2%) drop in
throughput and 46 ms (+46.3%) increase in latency. The effect of the
large window and the relatively high output event rate is even more
prevalent in the distributed case because a larger number of tuples
need to be serialized over the network to the third "provenance”
node, negatively impacting throughput and latency as a result.

The behavior of BL, in this case, is on par with the intra-process
experiments. Not only does the memory once again become a bot-
tleneck but also in these experiments the network communication
overhead incurred by serializing and transporting all the source
streams through the network is so high that the system produces
very little or no provenance data (even when increasing the dura-
tion of the experiments). As discussed in § 6, GeneaLog overcomes
this problem since it only transmits the actual provenance data
between nodes instead of the entire source stream.

Graph Traversal Overhead. To achieve further insight into the per-
formance characteristics of our technique, we evaluated the cost of
traversing the contribution graph (Listing 1) for every sink tuple
produced. Figure 14 shows the results for both the intra-process
and the inter-process case. For the former, in the majority of the
queries, the traversal requires on average less than 0.4 ms. Even in
Q3 which has the largest provenance graph with hundreds of tuples,
the average overhead is approximately 1.6 ms, which is negligible
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considering the low frequency of alerts in streaming monitoring
applications. For the latter, the average traversal time in all queries
in SPE instances 1 and 2 is less than 0.3 ms. This lower overhead
is expected since the contribution graph in these experiments is
split into multiple SPE instances, reducing the amount of work on
each processing node. The slightly higher overhead in the first SPE
instances is also expected since the contribution graphs are larger
in these nodes which are closer to the sources.

Summary of evaluation results. As we showed in the different ex-
periments, the overhead introduced by the GeneaLog framework in
real-world use cases is minimal. In the majority of cases, the perfor-
mance metrics of the queries were reduced by less than 15% whereas
the memory usage remained less than 25MB. Even in queries which
were more demanding for provenance, it continued to incur little
overhead while running on resource-constrained devices, with the
main performance bottleneck being the CPU. On the contrary, pre-
viously known provenance approaches proposed in the literature
led to degradation of the QoS metrics of the query and proved
inadequate for our use cases. This result indicates that GeneaLog
can indeed be used in edge and fog environments with inexpensive,
low-energy devices.

8 RELATED WORK

Although many different types of provenance exist [17], the most
related to our work are data provenance and workflow provenance.
In the field of databases[37], data provenance tracks individual data
items to find from where the data of a result comes from (which
attributes), how such result is produced (which operations) and
why (i.e., the lineage of the result). It requires a high degree of
instrumentation and strict semantics, which are usually defined
in a database system [9] [21]. Alternatively, why-not provenance
tries to explain why some expected results were missing from the
output [7]. Workflow provenance is more general and refers to
tracking the scientific, business and data analytics workflows [15]
[13]. Provenance is especially challenging in the field of big data
analytics [12] since many traditional techniques require access to
the whole dataset and are thus inapplicable. Several provenance
toolkits have been proposed for popular analytics frameworks such
as Lipstick and Inspector Gadget [30] [4] for Pig [31] and Titian
[24] for Apache Spark [38].

When focusing on streaming applications, early work on prove-
nance has been discussed in [34], proposing a low-latency technique
for generating coarse-grained provenance information about the
dependencies between different streams instead of individual tuples.
In [36], Wang et al. deem annotation based techniques inadequate
and propose a model-based provenance technique for provenance
in medical stream processing systems. Apart from the need to define
explicit provenance rules on each operator their implementation
requires all intermediate streams and thus is not well-suited for
modern stream processing systems. A different approach, aimed
at minimizing the storage requirements of provenance is followed
in [22] where the processing time along with other run-time char-
acteristics are utilized to generate the provenance information.
However, this technique is not applicable to all the standard op-
erators presented in § 2. The use of fine-grained data provenance
in debugging stream processing applications is described in [14].
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Provenance, in this case, is constructed using automatically gen-
erated inter-operator data-flows and user-defined intra-operator
relations. Due to the performance impact and huge data volume
of provenance-related data, the authors suggest using time-based
and topology-based execution slices. Ariadne [16] is, to the best
of our knowledge, the closest approach to GeneaLog in the litera-
ture. While also relying on operator instrumentation, it nonetheless
requires the storing of all input data and uses variable-length an-
notations, potentially leading to degradation figures similar to the
ones presented in our evaluation section.

Related in spirit to GeneaLog’s distributed provenance approach,
data streaming fault tolerance techniques are designed to maintain
information about the data sent from a node A to a node B by
forwarding copies of A’s output tuples to replicas [6] or by buffering
output tuples at A (the ones sent since the last backup of B for
passive-standby [2] or all the ones contributing to B’s state in
upstream-backup [23]). To the best of our knowledge, existing
solutions are not designed to purge the additional information A
maintains per tuple as soon as such tuple can no longer contribute
to a sink tuple but rather when such tuple is received by all replicas,
safely persisted in a backup or acknowledged as processed by B.
That is, existing solutions do not aim at minimizing the additional
information they maintain based on whether the latter contributes
to the application’s results. As we mention in § 9, it would be
valuable to study the joint benefits of techniques for reliable stream
processing and provenance.

9 CONCLUSIONS AND FUTURE WORK

We presented GeneaLog, a method for streaming applications’ fine-
grained data provenance, and its algorithmic implementations for
intra-process and inter-process deployments. GeneaLog advances
the state-of-the-art by defining a technique in which performance
overheads are minimized. This is crucial for streaming applications
running edge analysis in modern cyber-physical systems. Under
the hood, this is achieved by leveraging a small, fixed-size set of
meta-attributes for each tuple processed by a streaming application
(in contrast to existing solutions that rely on an arbitrary number
of meta-attributes) and by using processes’ memory reclamation
techniques to discard tuples as soon as they do not contribute to
other tuples in the streaming application.

We provide a fully implemented prototype and show it incurs
small throughput and latency overheads and, in the worst case,
a memory footprint of some tens of megabytes, in contrast with
state-of-the-art techniques’ overheads that are at least one order of
magnitude greater and rapidly exhaust the memory of the devices
running the analysis.

We believe that the results we present can be further investigated
(i) to define operator-specific optimizations for window-based anal-
ysis and reduce overheads when only some (rather than all) of the
tuples of a window contribute to a sink tuple, (ii) to adapt Genea-
Log’s technique to SPEs with ad-hoc memory management and (iii)
to leverage GenealLog in fault tolerance approaches that rely on
upstream peers’ buffering and minimize the number of tuples the
latter maintain (in order to replay them in case of failure).
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