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ABSTRACT

In our digitalization era, where large and continuous data streams

are produced by an ever increasing number of sensors, data retrieval

and storage from edge devices is hampered when data volumes

exceed the communication bandwidth of cyber-physical systems.

Piecewise Linear Approximation (PLA), which trades space against

precision by representing some portion of data by segments, could

reduce the volume of transmitted and stored data and thus be

beneficial to a wide range of edge/fog system architectures, sav-

ing communication bandwidth and addressing the aforementioned

drawback. Porting a well-established tool such as PLA into the

streaming paradigm is nonetheless challenging, and attention has

to be payed to balance achievable compression, delays and impreci-

sion. We analyze such challenges and propose different solutions

to meet them. Our main contribution is a set of streaming PLA

techniques that allow compression of the input data stream on the

fly, tolerating a bounded maximum error. Through an experimental

study based on real data, we demonstrate the superiority of our

techniques in all sought aspects over preceding methods.
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1 INTRODUCTION

The recent constant increase in the quantity of continuous data

produced by connected devices triggers numerous big data chal-

lenges, and sets an environment where reducing the volume of

sensed data is more important than ever. High speed production of

data records induced by large cyber-physical systems such as smart
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grids, homes and cars, moreover advocates streaming algorithms

with small overhead. In this context, we identify two interesting

scenarios for compression of continuously sensed data: reduction

of (1) bandwidth and (2) storage consumption. An efficient com-

pression mechanism could meet one of the prominent challenges in

data retrieval and maintenance for large IoT systems: their limited

storage and bandwidth could be partially discharged by decreasing

the volume of data produced by sensors at the edge.

Computing a Piecewise Linear Approximation (PLA) of time

series is a classical problem which asks to represent a series of

timestamped records by a sequence of line segments while keeping

the error of the approximation within some acceptable bound. In the

extensive literature dealing with PLA (among others [2, 4, 5, 7, 9]), it

is clearly stated that its main intend is to reduce the size of the input

time series for both efficiency of storage and (later) processing. This

entails a practical trade-off between a bounded precision loss and
space saving for the time series representation. The advent of edge

computing puts a brand new focus on this well-studied problem

with new considerations, rather than merely only reducing the

number of line segments of the representation as in most previous

works about PLA. More concretely, how to produce such segments

in a streaming, one-pass fashion and ensure the error bound is

respected. Using PLA, we are able to extract in an online fashion

an approximation stream with the same number of points of an

input stream guaranteeing a fixed absolute maximal error. This is

not covered, to the best of our knowledge, by traditional streaming

approaches to compression for time series and other stream types

[1, 3, 8] that do not guarantee a bounded error, are domain-specific

and generally use a different error metric than absolute difference.

In this paper, we revisit and check suitability of PLA as an online

compression tool with bounded error for streaming data produced

at high speed from small computing devices. We present here fully

streaming protocols for producing the PLA representation that,

when compared to state-of-the-art PLA techniques, overpass all of

them by one to several order of magnitude regarding the rate at

which output data is generated for an increase level of compres-

sion. We also introduce a safe protocol with the guarantee that

data will never get inflated by the compression process and a new

original method to compute the PLA of the input stream producing

significantly smaller errors for comparable compression rates.

In Section 2, we present an overview of PLA and our new PLA

construction method. Using PLA in streaming environments is re-

viewed in Section 3, as well as our new streaming mechanisms that

generate in an online fashion the compressed data. The subsequent

section presents a thorough evaluation of our new methods com-

pared to existing PLA techniques on real world time series datasets,

while Section 5 concludes the paper.
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2 PIECEWISE LINEAR APPROXIMATION

We consider here the problem of computing a piecewise linear

approximation of a data stream while tolerating a prescribed maxi-

mum error of ε , andmore precisely the online version of the problem,

i.e. (i) the time series is processed one record at a time, the output

line segments are produced along the way, and (ii) the projected

points along the compression line segments always fall within ε
from the original tuples. Figure 1 gives an example of a PLA, where

original data points are crossed, reconstructed points bulleted, ap-

proximation error as vertical bars and information about the PLA

streamed along the processing of the input stream.

2.1 Related work

We briefly introduce here themost popular methods to construct the

PLA of a time series, summarized in Table 1 by: worst case/amortized

complexity, latency introduced in the reconstruction, processing

time, optimality criteria for the PLA construction, size of the PLA

information generated on the output stream, number of line seg-

ments and overall compression on a relative scale −− (worst), −,

+/−, +, ++ (best), based on previous experimental surveys comple-

mented by our results. Among the evaluated methods
1
, SwingFilter

is a simple greedy construction, Continuous produces the optimal

PLA in terms of the number J of continuous segments (i.e. consecu-
tive ones must share their endpoint), Convex-Hull the optimal PLA

in the number D of discontinuous segments, MixedPLA the PLA

minimizing 2J + 3D, and finally Linear is a new heuristic method.

Most PLA methods follow a greedy approach: a longest possible

approximation is constructed from an initial point, till encountering

a break-up point that cannot be approximated with the previous

sequence, then it restarts from that point on. In order to efficiently

(in O(1) amortized time) find such a break-up point, all methods

revolve around calculating extreme slope lines (bounding possible

approximation slopes) in order to quickly evaluate if adding a new

input point to the approximation is feasible. The Convex-Hull

method finds the optimal PLA in number of discontinuous segments

by surprisingly only following the greedy approach. From a fixed

starting point, the longest approximation segment can be efficiently

calculated by maintaining two convex hulls
2
while processing new

inputs (Figure 2 displays both hulls for some input sequence) and

using the hulls to update the extreme slope lines. Once a break-up

point is found, a segment line is generated (average of possible

slopes) and the algorithm restarts.

1
For a complete description of each method, refer to the references given in Table 1.

2
The convex hull of a set of points is the minimum convex set containing all of them.
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Figure 1: Example of a PLA using maximum error ε = 0.5.

2.2 A new PLA method: Linear

PLA methods developed so far optimize the representation based

only on the number of disc/continuous segments. Hence, the in-

trinsic PLA trade-off compression versus loss of accuracy is only

encoded in those methods as “compression” (for one fixed criterion)

versus maximum error. Thus individual errors that better charac-

terize the precision loss are lost in the process. We devise here a

simple and efficient novel PLA method aiming at reducing those

errors while preserving a fixed maximum error. The method fol-

lows the greedy approach but uses the best-fit line obtained by a

simple regression model for the approximation. Such a line of slope

a = cov(t ,y)/var(t) and y-intercept µy − aµt , is calculated in an

online fashion from the covariance cov(t ,y) = (
∑
i tiyi )/n − µt µy ,

variance var(t) = (
∑
i t

2

i )/n−µ2t , averages µt and µy and n the num-

ber of compressed points; those quantities are maintained keeping

track of the different sums and n. Once the line has been calculated,

a second step is to decide whether it is associated with a correct

approximation for the points involved, or it violates the error re-

quirement for some of them. The simplest way to check that, is to

verify sequentially that condition for each currently approximated

point, entailing an inappropriate linear cost for the verification.

To mitigate this issue, we maintain the two convex hulls associ-

ated with the current approximation after each new arrival (as the

Convex-Hull method). The current best-fit line is then verified by

traversing both hulls and checking that the line stays above the

lower hull and below the upper one (illustrated by Figure 2 where

the plain line is the best-fit one for 10 points, the dashed one for

11 points). The hulls themselves may have a linear size in n, but in
practice they are rarely larger than a few units (cf [5, 9]).

3 STREAMING PLA AND PROTOCOLS

Context and Metrics. We identify two situations in the context

of edge computing where a simple compression procedure as PLA

can be easily implemented and greatly beneficial:

• (1) Reduce bandwidth consumption: in order to decrease the

volume of data sent over the network from a large set of embed-

ded devices to a distant datacenter monitoring them;

• (2) Reduce storage consumption: in order to decrease the

volume of data stored by sensors at the edge before transmis-

sion/processing (or the amount of data saved by the datacenter).

These scenarios form a common framework where an input

stream is processed and a compressed one is generated and trans-

mitted and/or stored, to be later (or on reception) reconstructed in

an online fashion. They lead us to investigate the performance asso-

ciatedwith the full compression process for existing PLA algorithms

Figure 2: Best-fit lines of a set of points.
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Table 1: Summary of the evaluated PLA methods and their respective features.

PLA method [ref] – Key Complexity Latency Proc. time Opt. criterion Size of PLA output No. of segm. Compr.

SwingFilter [2, 7] – Sw O(1)/O(1) ++ ++ none 2 doubles −− −−

Convex-Hull [2, 9] – Sl, C1/C2 O(n)/O(1) +/− +/− # disc. segm. 3 doubles + +

Continuous [4] – C O(n)/O(1) − +/− # cont. segm. 2 doubles − +

MixedPLA [5] – M O(n)/O(1) −− −− global size 2 or 3 doubles ++ ++

Linear (new) – L1/L2 O(n)/O(n) + + none 2 doubles + 1 byte +/− +/−

and our new solutions, independently of concrete implementation

aspects, with respect to the following three aspects:

• Compression: capturing the space gain between the compressed

stream and the original input stream; it corresponds to the ratio

between the amortized size in bytes taken by each tuple in the

compressed stream versus the original size.

• Latency: capturing the delay in number of records introduced

by the compression process; it measures the logical latency cor-

responding to the number of points that occurred between the

emission of an input tuple and its reconstruction.

• Error: capturing the precision loss by considering continuous

and average error rather than only maximum error as in previ-

ous works; it corresponds to the absolute differences between

approximated tuples and their original counterpart.

It is important for us to highlight that decision making should

be considered irreversible, as once information about a new line

segment has been transmitted over the network, it is hardly modi-

fiable. Hence, particular attention will be given to peak values of

these metrics in addition to the aggregated average.

Streaming PLA Protocols

Known studies of PLA methods in the literature do not focus on the

cost of when and how the information is output and reconstructed.

In our study that takes place in streaming environments (where

the performance of any tool depends both on its semantics and its

algorithmic implementation), it is, however, particularly important.

The compression’s performance will indeed depend both on the

algorithm chosen to construct the PLA and on how results are

output, i.e. the corresponding streaming PLA protocol. Below we

outline several alternatives:

Implicit: A streaming protocol implicitly assumed in previous

PLA works, consists in using as output information directly the

segments’ endpoints of the PLA representation. This allows to

reconstruct quickly tuples, however, this strategy may generate an

inflated stream when compression is not possible (up to 2 - 3 times

more data is produced in the worst case).

We introduce two new protocols to improve compression and

latency as well as to avoid inflation. They differ from the implicit
one through: (1) introducing “singleton” tuples, that are not part

of any approximation segment, allowing (partial) deactivation of

y Compressor

(t ,y)

input

(t ,y)

t Compressor

t

Decompressor

(n,a,b) n ≥ 3

(n,y) n = 1

t̃

(t ′,y′)

output

Figure 3: SingleStream protocol flowchart.

PLA compression; (2) using a counter n for indicating the segment

length, removing the dependency on including timestamps in the

output stream. The latter leads to a potential gain in compression,

as n may need much less space to be represented compared to

timestamps (n is bounded, also implying a maximum latency).

SingleStream: In this protocol (cf. Figure 3), the stream of

input tuples (t ,y) is half-duplicated such that the t values form a

separate stream (that will be stored or compressed), then fed to a

PLA compressor that generates line segments which are output if

representing more than 3 values; else the compressor is restarted

after outputting the first tuple as a singleton. Each segment is rep-

resented by a triplet (n,a,b) where (a,b) are the linear coefficients

and n the segment length in tuples. Singleton values are generated

on the same stream, preceded by a counter set to 1. The compres-

sion is upper bounded by some N which allows n to be represented

in log
2
(N ) bits. To reconstruct the input stream from timestamp

ti , one checks the value of the next counter n on the compression

stream: if n = 1, then the reconstructed record (ti ,y) is generated
(where y is the value following the counter); otherwise (n ≥ 3), the

two coefficients a and b given right after the counter are used to

generate the sequence (tj ,a.tj + b)i≤j≤n of n reconstructed tuples

consuming along the way the n − 1 timestamps succeeding ti .
TwoStreams: The protocol uses two streams to encode a single

input stream of (t ,y) tuples, by forwarding the latter to a segment

line compressor, which produces: one stream of uncompressed

y-values and one of line segments represented by quadruplets

(t0,n,a,b), where t0 is the starting time of the segment, whereas

n,a,b have the same meaning as in the previous protocol. A min-

imum of 4 values are compressed by line segments, redirecting

otherwise the y-values to the singleton stream. This ensures data

inflation never occurs and can be of interest in streaming situations

where the quantity of transmissions cannot be increased by any

means. By comparing the current timestamp t to t0, one can easily

deduce whether to consume a value on the singleton stream or

reconstruct the n values associated with the current segment.

4 EVALUATION

We thoroughly evaluate against the metrics introduced in § 3 us-

ing datasets of realistic streamed data the five PLA methods of

Table 1. The four classical PLA methods use the implicit protocol

described in the previous section, whereas C1/L1 is associated with

SingleStream protocol (SS) and C2/L2 with TwoStreams (TS).

Datasets: We use three different datasets: (a) GPS consists of

trajectories collected within the scope of the (Microsoft Research

Asia) Geolife project [10]; (b) LiDAR consists of LiDAR scans from

the Ford Campus dataset [6]; (c) URBAN consists of average vehicle

speed measured at different locations in the city of Rio de Janeiro.
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Figure 4: Statistics for 3 levels of compression for URBAN (low), GPS (medium) and LiDAR (high) datasets.

Setup: When using SS and TS, the compression is bounded to

256 values per segment and the segment length is coded on a single

byte. All other input data numbers require at least double precision

in order not to break the error threshold and thus use 8 bytes.

Results: Detailed results for three levels of compression are

depicted in Figure 4, whereas the remaining ones are omitted due

to space constraints. Each row presents a different error threshold

(low,medium and high compression) for one of the dataset. Statistics

are shown by a box plot (first and third quartiles with whiskers

extending to 1.5 the interquartile range) and a bold line for the

average. Figure 5 presents the ranking of the different PLA methods

and protocols obtained by summing themean value of each statistics

in all the experiments and normalizing them by the highest value.

Our thorough evaluation shows that:

• Compression: TS is the only safe protocol that never inflates

data (especially noticeable at low compression phase); SS achieves

the best compression (only comparable with MixedPLA).
• Latency: TS/SS achieve smaller latencies with SS the lowest

(delays are significantly smaller than with previous methods).

• Error: Linear produces the smallest errors (with comparable

delays and compression ratio to the other evaluated methods);

New protocols present better trade-offs compression/error (most

errors are smaller with our implementations).

An overall key comment is that the most influential factors on
the different metrics are the protocol (first) and the PLA method

(second). The benchmark confirms that applying PLA compres-

sion using our protocols with a bounded segment length achieves

comparable compression level while showing significant improve-

ments (up to two orders of magnitude) on the measured latency

of the compression. To be noted as well, due to the possibility to

output singleton values, errors produced by our protocols are on

average smaller than with any other PLA methods. Finally, the

Linear method presents errors in general about half smaller than

what is currently achieved by state-of-the-art algorithms, while the

compression loss is mitigated by using our streaming protocols.

C1M L1 C C2Sl L2Sw
0

0.5

1 Compression

L1 L2 C1C2Sw Sl C M

Latency

L2L1C2C1SwM Sl C

Error

Figure 5: Ranking (from best to worst) of the PLA methods

and protocols combinations.

5 CONCLUSIONS

We suggest using PLA to reduce the volume of streamed data in

large IoT systems. Moreover, we introduce several streaming tech-

niques and a novel PLA method to balance the trade-offs when

using PLA as a compression tool. Our experimental results show

that for comparable compression ratios, our techniques reduce sig-

nificantly both the reconstructed stream’s delays and individual

errors when compared to baseline PLA methods. Our work demon-

strates the benefits of using streaming PLA compression, which

can help decrease significantly the communication needs in large

cyber-physical systems such as vehicular swarms or smart grids.
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