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ABSTRACT

In our digitalization era, where large and continuous data streams
are produced by an ever increasing number of sensors, data retrieval
and storage from edge devices is hampered when data volumes
exceed the communication bandwidth of cyber-physical systems.
Piecewise Linear Approximation (PLA), which trades space against
precision by representing some portion of data by segments, could
reduce the volume of transmitted and stored data and thus be
beneficial to a wide range of edge/fog system architectures, sav-
ing communication bandwidth and addressing the aforementioned
drawback. Porting a well-established tool such as PLA into the
streaming paradigm is nonetheless challenging, and attention has
to be payed to balance achievable compression, delays and impreci-
sion. We analyze such challenges and propose different solutions
to meet them. Our main contribution is a set of streaming PLA
techniques that allow compression of the input data stream on the
fly, tolerating a bounded maximum error. Through an experimental
study based on real data, we demonstrate the superiority of our
techniques in all sought aspects over preceding methods.
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1 INTRODUCTION

The recent constant increase in the quantity of continuous data
produced by connected devices triggers numerous big data chal-
lenges, and sets an environment where reducing the volume of
sensed data is more important than ever. High speed production of
data records induced by large cyber-physical systems such as smart
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grids, homes and cars, moreover advocates streaming algorithms
with small overhead. In this context, we identify two interesting
scenarios for compression of continuously sensed data: reduction
of (1) bandwidth and (2) storage consumption. An efficient com-
pression mechanism could meet one of the prominent challenges in
data retrieval and maintenance for large IoT systems: their limited
storage and bandwidth could be partially discharged by decreasing
the volume of data produced by sensors at the edge.

Computing a Piecewise Linear Approximation (PLA) of time
series is a classical problem which asks to represent a series of
timestamped records by a sequence of line segments while keeping
the error of the approximation within some acceptable bound. In the
extensive literature dealing with PLA (among others [2, 4,5, 7, 9]), it
is clearly stated that its main intend is to reduce the size of the input
time series for both efficiency of storage and (later) processing. This
entails a practical trade-off between a bounded precision loss and
space saving for the time series representation. The advent of edge
computing puts a brand new focus on this well-studied problem
with new considerations, rather than merely only reducing the
number of line segments of the representation as in most previous
works about PLA. More concretely, how to produce such segments
in a streaming, one-pass fashion and ensure the error bound is
respected. Using PLA, we are able to extract in an online fashion
an approximation stream with the same number of points of an
input stream guaranteeing a fixed absolute maximal error. This is
not covered, to the best of our knowledge, by traditional streaming
approaches to compression for time series and other stream types
[1, 3, 8] that do not guarantee a bounded error, are domain-specific
and generally use a different error metric than absolute difference.

In this paper, we revisit and check suitability of PLA as an online
compression tool with bounded error for streaming data produced
at high speed from small computing devices. We present here fully
streaming protocols for producing the PLA representation that,
when compared to state-of-the-art PLA techniques, overpass all of
them by one to several order of magnitude regarding the rate at
which output data is generated for an increase level of compres-
sion. We also introduce a safe protocol with the guarantee that
data will never get inflated by the compression process and a new
original method to compute the PLA of the input stream producing
significantly smaller errors for comparable compression rates.

In Section 2, we present an overview of PLA and our new PLA
construction method. Using PLA in streaming environments is re-
viewed in Section 3, as well as our new streaming mechanisms that
generate in an online fashion the compressed data. The subsequent
section presents a thorough evaluation of our new methods com-
pared to existing PLA techniques on real world time series datasets,
while Section 5 concludes the paper.
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2 PIECEWISE LINEAR APPROXIMATION

We consider here the problem of computing a piecewise linear
approximation of a data stream while tolerating a prescribed maxi-
mum error of ¢, and more precisely the online version of the problem,
i.e. (i) the time series is processed one record at a time, the output
line segments are produced along the way, and (ii) the projected
points along the compression line segments always fall within ¢
from the original tuples. Figure 1 gives an example of a PLA, where
original data points are crossed, reconstructed points bulleted, ap-
proximation error as vertical bars and information about the PLA
streamed along the processing of the input stream.

2.1 Related work

We briefly introduce here the most popular methods to construct the
PLA of a time series, summarized in Table 1 by: worst case/amortized
complexity, latency introduced in the reconstruction, processing
time, optimality criteria for the PLA construction, size of the PLA
information generated on the output stream, number of line seg-
ments and overall compression on a relative scale —— (worst), —,
+/—, +, ++ (best), based on previous experimental surveys comple-
mented by our results. Among the evaluated methods?®, SwingFilter
is a simple greedy construction, Continuous produces the optimal
PLA in terms of the number J of continuous segments (i.e. consecu-
tive ones must share their endpoint), Convex-Hull the optimal PLA
in the number D of discontinuous segments, MixedPLA the PLA
minimizing 2] + 3D, and finally Linear is a new heuristic method.

Most PLA methods follow a greedy approach: a longest possible
approximation is constructed from an initial point, till encountering
a break-up point that cannot be approximated with the previous
sequence, then it restarts from that point on. In order to efficiently
(in O(1) amortized time) find such a break-up point, all methods
revolve around calculating extreme slope lines (bounding possible
approximation slopes) in order to quickly evaluate if adding a new
input point to the approximation is feasible. The Convex-Hull
method finds the optimal PLA in number of discontinuous segments
by surprisingly only following the greedy approach. From a fixed
starting point, the longest approximation segment can be efficiently
calculated by maintaining two convex hulls? while processing new
inputs (Figure 2 displays both hulls for some input sequence) and
using the hulls to update the extreme slope lines. Once a break-up
point is found, a segment line is generated (average of possible
slopes) and the algorithm restarts.

For a complete description of each method, refer to the references given in Table 1.
2The convex hull of a set of points is the minimum convex set containing all of them.
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Figure 1: Example of a PLA using maximum error ¢ = 0.5.
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2.2 A new PLA method: Linear

PLA methods developed so far optimize the representation based
only on the number of disc/continuous segments. Hence, the in-
trinsic PLA trade-off compression versus loss of accuracy is only
encoded in those methods as “compression” (for one fixed criterion)
versus maximum error. Thus individual errors that better charac-
terize the precision loss are lost in the process. We devise here a
simple and efficient novel PLA method aiming at reducing those
errors while preserving a fixed maximum error. The method fol-
lows the greedy approach but uses the best-fit line obtained by a
simple regression model for the approximation. Such a line of slope
a = cov(t,y)/var(t) and y-intercept yy — ayy, is calculated in an
online fashion from the covariance cov(t,y) = (X; tiyi)/n — pie iy,
variance var(t) = (3}; tl.z)/n —,u%, averages ji; and iy and n the num-
ber of compressed points; those quantities are maintained keeping
track of the different sums and n. Once the line has been calculated,
a second step is to decide whether it is associated with a correct
approximation for the points involved, or it violates the error re-
quirement for some of them. The simplest way to check that, is to
verify sequentially that condition for each currently approximated
point, entailing an inappropriate linear cost for the verification.
To mitigate this issue, we maintain the two convex hulls associ-
ated with the current approximation after each new arrival (as the
Convex-Hull method). The current best-fit line is then verified by
traversing both hulls and checking that the line stays above the
lower hull and below the upper one (illustrated by Figure 2 where
the plain line is the best-fit one for 10 points, the dashed one for
11 points). The hulls themselves may have a linear size in n, but in
practice they are rarely larger than a few units (cf [5, 9]).

3 STREAMING PLA AND PROTOCOLS

Context and Metrics. We identify two situations in the context
of edge computing where a simple compression procedure as PLA
can be easily implemented and greatly beneficial:

o (1) Reduce bandwidth consumption: in order to decrease the
volume of data sent over the network from a large set of embed-
ded devices to a distant datacenter monitoring them;

e (2) Reduce storage consumption: in order to decrease the
volume of data stored by sensors at the edge before transmis-
sion/processing (or the amount of data saved by the datacenter).
These scenarios form a common framework where an input

stream is processed and a compressed one is generated and trans-

mitted and/or stored, to be later (or on reception) reconstructed in
an online fashion. They lead us to investigate the performance asso-
ciated with the full compression process for existing PLA algorithms

Figure 2: Best-fit lines of a set of points.



Table 1: Summary of the evaluated PLA methods and their respective features.

PLA method [ref] — Key ‘

Complexity ‘ Latency ‘ Proc. time ‘ Opt. criterion ‘

Size of PLA output ‘ No. of segm. ‘ Compr.

SwingFilter [2, 7] - Sw 0(1)/0(1) ++ ++
Convex-Hull [2,9] - S1,C1/C2 | O(n)/O(1) +/- +/-
Continuous [4] - C O(n)/0(1) - +/-
MixedPLA [5] - M O(n)/0(1) - -
Linear (new) — L1/L2 O(n)/O(n) + +

and our new solutions, independently of concrete implementation

aspects, with respect to the following three aspects:

o Compression: capturing the space gain between the compressed
stream and the original input stream; it corresponds to the ratio
between the amortized size in bytes taken by each tuple in the
compressed stream versus the original size.

e Latency: capturing the delay in number of records introduced
by the compression process; it measures the logical latency cor-
responding to the number of points that occurred between the
emission of an input tuple and its reconstruction.

e Error: capturing the precision loss by considering continuous
and average error rather than only maximum error as in previ-
ous works; it corresponds to the absolute differences between
approximated tuples and their original counterpart.

It is important for us to highlight that decision making should
be considered irreversible, as once information about a new line
segment has been transmitted over the network, it is hardly modi-
fiable. Hence, particular attention will be given to peak values of
these metrics in addition to the aggregated average.

Streaming PLA Protocols

Known studies of PLA methods in the literature do not focus on the
cost of when and how the information is output and reconstructed.
In our study that takes place in streaming environments (where
the performance of any tool depends both on its semantics and its
algorithmic implementation), it is, however, particularly important.
The compression’s performance will indeed depend both on the
algorithm chosen to construct the PLA and on how results are
output, ie. the corresponding streaming PLA protocol. Below we
outline several alternatives:

IMPLICIT: A streaming protocol implicitly assumed in previous
PLA works, consists in using as output information directly the
segments’ endpoints of the PLA representation. This allows to
reconstruct quickly tuples, however, this strategy may generate an
inflated stream when compression is not possible (up to 2 - 3 times
more data is produced in the worst case).

We introduce two new protocols to improve compression and
latency as well as to avoid inflation. They differ from the implicit
one through: (1) introducing “singleton” tuples, that are not part
of any approximation segment, allowing (partial) deactivation of

(t.y)

input

Decompressor

Figure 3: SINGLESTREAM protocol flowchart.
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none 2 doubles - -
# disc. segm. 3 doubles + +
# cont. segm. 2 doubles - +
global size 2 or 3 doubles ++ ++
none 2 doubles + 1 byte +/- +/—

PLA compression; (2) using a counter n for indicating the segment
length, removing the dependency on including timestamps in the
output stream. The latter leads to a potential gain in compression,
as n may need much less space to be represented compared to
timestamps (n is bounded, also implying a maximum latency).
SINGLESTREAM: In this protocol (cf. Figure 3), the stream of
input tuples (¢, y) is half-duplicated such that the ¢ values form a
separate stream (that will be stored or compressed), then fed to a
PLA compressor that generates line segments which are output if
representing more than 3 values; else the compressor is restarted
after outputting the first tuple as a singleton. Each segment is rep-
resented by a triplet (n, a, b) where (a, b) are the linear coefficients
and n the segment length in tuples. Singleton values are generated
on the same stream, preceded by a counter set to 1. The compres-
sion is upper bounded by some N which allows n to be represented
in log,(N) bits. To reconstruct the input stream from timestamp
t;, one checks the value of the next counter n on the compression
stream: if n = 1, then the reconstructed record (t;, y) is generated
(where y is the value following the counter); otherwise (n > 3), the
two coefficients a and b given right after the counter are used to
generate the sequence (tj, a.tj + b)i<j<n of n reconstructed tuples
consuming along the way the n — 1 timestamps succeeding ¢;.
TwoSTREAMS: The protocol uses two streams to encode a single
input stream of (¢, y) tuples, by forwarding the latter to a segment
line compressor, which produces: one stream of uncompressed
y-values and one of line segments represented by quadruplets
(to, n, a, b), where ty is the starting time of the segment, whereas
n, a, b have the same meaning as in the previous protocol. A min-
imum of 4 values are compressed by line segments, redirecting
otherwise the y-values to the singleton stream. This ensures data
inflation never occurs and can be of interest in streaming situations
where the quantity of transmissions cannot be increased by any
means. By comparing the current timestamp ¢ to fy, one can easily
deduce whether to consume a value on the singleton stream or
reconstruct the n values associated with the current segment.

4 EVALUATION

We thoroughly evaluate against the metrics introduced in § 3 us-
ing datasets of realistic streamed data the five PLA methods of
Table 1. The four classical PLA methods use the implicit protocol
described in the previous section, whereas C1/L1 is associated with
SINGLESTREAM protocol (SS) and C2/L2 with TwoSTREAMS (TS).
Datasets: We use three different datasets: (a) GPS consists of
trajectories collected within the scope of the (Microsoft Research
Asia) Geolife project [10]; (b) LiDAR consists of LiDAR scans from
the Ford Campus dataset [6]; (c) URBAN consists of average vehicle
speed measured at different locations in the city of Rio de Janeiro.
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Figure 4: Statistics for 3 levels of compression for URBAN (low), GPS (medium) and LiDAR (high) datasets.

Setup: When using SS and TS, the compression is bounded to
256 values per segment and the segment length is coded on a single
byte. All other input data numbers require at least double precision
in order not to break the error threshold and thus use 8 bytes.

Results: Detailed results for three levels of compression are
depicted in Figure 4, whereas the remaining ones are omitted due
to space constraints. Each row presents a different error threshold
(low, medium and high compression) for one of the dataset. Statistics
are shown by a box plot (first and third quartiles with whiskers
extending to 1.5 the interquartile range) and a bold line for the
average. Figure 5 presents the ranking of the different PLA methods
and protocols obtained by summing the mean value of each statistics
in all the experiments and normalizing them by the highest value.
Our thorough evaluation shows that:

e Compression: TS is the only safe protocol that never inflates
data (especially noticeable at low compression phase); SS achieves
the best compression (only comparable with MixedPLA).

e Latency: TS/SS achieve smaller latencies with SS the lowest
(delays are significantly smaller than with previous methods).

e Error: Linear produces the smallest errors (with comparable
delays and compression ratio to the other evaluated methods);
New protocols present better trade-offs compression/error (most
errors are smaller with our implementations).

An overall key comment is that the most influential factors on
the different metrics are the protocol (first) and the PLA method
(second). The benchmark confirms that applying PLA compres-
sion using our protocols with a bounded segment length achieves
comparable compression level while showing significant improve-
ments (up to two orders of magnitude) on the measured latency
of the compression. To be noted as well, due to the possibility to
output singleton values, errors produced by our protocols are on
average smaller than with any other PLA methods. Finally, the
Linear method presents errors in general about half smaller than
what is currently achieved by state-of-the-art algorithms, while the
compression loss is mitigated by using our streaming protocols.

11 Compression Latency Error
0.5
0
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Figure 5: Ranking (from best to worst) of the PLA methods
and protocols combinations.

5 CONCLUSIONS

We suggest using PLA to reduce the volume of streamed data in
large IoT systems. Moreover, we introduce several streaming tech-
niques and a novel PLA method to balance the trade-offs when
using PLA as a compression tool. Our experimental results show
that for comparable compression ratios, our techniques reduce sig-
nificantly both the reconstructed stream’s delays and individual
errors when compared to baseline PLA methods. Our work demon-
strates the benefits of using streaming PLA compression, which
can help decrease significantly the communication needs in large
cyber-physical systems such as vehicular swarms or smart grids.
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