STRETCH: Scalable and Elastic Deterministic
Streaming Analysis with Virtual Shared-Nothing Parallelism

Hannaneh Najdataei, Yiannis Nikolakopoulos
Marina Papatriantafilou, Philippas Tsigas, Vincenzo Gulisano
Chalmers University of Technology
{hannajd,ioaniko,ptrianta,tsigas,vinmas}@chalmers.se

ABSTRACT

Despite the established scientific knowledge on efficient parallel
and elastic data stream processing, it is challenging to combine
generality and high level of abstraction (targeting ease of use) with
fine-grained processing aspects (targeting efficiency) in stream pro-
cessing frameworks. Towards this goal, we propose STRETCH, a
framework that aims at guaranteeing (i) high efficiency in through-
put and latency of stateful analysis and (ii) fast elastic reconfigu-
rations (without requiring state transfer) for intra-node streaming
applications. To achieve these, we introduce virtual shared-nothing
parallelization and propose a scheme to implement it in STRETCH,
enabling users to leverage parallelization techniques while also
taking advantage of shared-memory synchronization, which has
been proven to boost the scaling-up of streaming applications while
supporting determinism. We provide a fully-implemented proto-
type and, together with a thorough evaluation, correctness proofs
for its underlying claims supporting determinism and a model (also
validated empirically) of virtual shared-nothing and pure shared-
nothing scalability behavior. As we show, STRETCH can match
the throughput and latency figures of the front of state-of-the-art
solutions, while also achieving fast elastic reconfigurations (taking
only a few milliseconds).

CCS CONCEPTS

« Information systems — Stream management; Data streams;
Online analytical processing engines;

KEYWORDS
Data streaming, Shared-nothing parallelism, Elasticity, Scalability

ACM Reference Format:

Hannaneh Najdataei, Yiannis Nikolakopoulos Marina Papatriantafilou, Philip-
pas Tsigas, Vincenzo Gulisano. 2019. STRETCH: Scalable and Elastic Deter-
ministic Streaming Analysis with Virtual Shared-Nothing Parallelism. In
DEBS ’19: The 13th ACM International Conference on Distributed and Event-
based Systems (DEBS ’19), June 24-28, 2019, Darmstadt, Germany. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3328905.3329509

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

DEBS ’19, June 24-28, 2019, Darmstadt, Germany

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6794-3/19/06...$15.00
https://doi.org/10.1145/3328905.3329509

1 INTRODUCTION

Data streaming builds on efficient one-pass analysis of unbounded
streams of tuples. It is widely adopted thanks to two decades of re-
search results and thanks to open-source Stream Processing Engines
(SPEs) [7, 10, 27, 28]. When such analysis is stateful, its resulting
output tuples can depend on arbitrarily-long portions of the input.

In the literature, many solutions study how to deploy state-
ful analysis and efficiently leverage multi-core architectures by
means of parallelism and elasticity (i.e., by multi-threaded execu-
tions in which resources as threads are adjusted over time) [4, 5, 9-
12, 25, 29]. Such techniques focus on optimizing the parallelization
of specific operators [9, 11, 12, 25, 29], managing the distributed
state of parallel operators [4, 5], providing operator-oblivious par-
allelization and elasticity [5, 10] or guaranteeing deterministic exe-
cution [8, 12, 30], among other aspects.

Challenges. Existing SPEs provide good support for paralleliza-
tion and elasticity of simple stateful analysis (e.g., continuous per-
key summation), but leave to users how to use their APIs efficiently
when programming complex stateful analysis. Consider, as a mo-
tivating example, a user trying to parallelize the analysis of an
application that tries to find, on a per-hashtag basis, how many
times an ordered sequence of words is found within or across con-
secutive tweets. Intuitively, the user could parallelize the application
by assigning the analysis of tweets carrying different hashtags to
distinct threads. Key-by partitioning, provided by Apache Flink [7]
(or simply Flink) and Apache Storm [28], could not be directly lever-
aged, though, for tweets carrying two or more hashtags assigned to
different threads. Users would need to either create single-hashtag
copies of tweets if the latter carry multiple hashtags (and then use
key-by partitioning) or define a custom tuple-to-thread assignment
scheme. In both cases, data duplication would unnecessarily ham-
per performance if the threads share memory and could instead
access the same copy of each tweet. To complicate the matter fur-
ther, if the SPEs arbitrarily interleave tuples forwarded to a parallel
thread from multiple streams, the user would also need to program
how to deterministically merge such streams (e.g., sort them on a
per-tuple basis [12] or with watermarks [1]), in order to prevent
the arbitrary interleaving from affecting whether the ordered se-
quence of words is found or not. Finally, the user might also need
to program how to serialize/deserialize the state of the analysis run
in parallel for the SPE to trigger reconfigurations (e.g., provisioning
or decommissioning of threads).

Addressing efficiently these connected challenges, that hold also
for other stateful streaming operators such as joins, is not trivial
for the average programmer. With our work, we aim at advancing
the front of SPEs” automation and tools available to end users.

https://doi.org/10.1145/3328905.3329509
https://doi.org/10.1145/3328905.3329509

DEBS ’19, June 24-28, 2019, Darmstadt, Germany

Contributions. These challenges have conflicting needs wrt "right
amount of sharing" to (i) enhance independence among threads,
as well as to (ii) enable efficient coordination for consistent re-
distribution of work when needed, while (iii) supporting determin-
ism. The implied trade-offs relate to the efficiency in synchroniza-
tion and state sharing among threads: on one hand, shared-nothing
processing maximizes parallelism, but is costly in reconfigurations
and in making copies of the data when needed; on the other hand,
sharing processing state might introduce contention in maintaining
parallelism, but facilitates the workload shifting among threads by
not needing state transfer protocols. Based on this, our motivat-
ing research question is: Can an intra-node streaming framework
take the best of two worlds, shared-nothing and shared-memory par-
allelism, (i) allowing users to program parallel and elastic stateful
operators, (ii) without partitioning but rather sharing input tuples
with all threads and specify which ones the latter should process or
ignore, while (iii) supporting deterministic execution and (iv) ensuring
high efficiency in terms of throughput, latency and reconfiguration
times?

We propose virtual shared-nothing parallelisation and provide
a framework leveraging it. The framework, called STRETCH, man-
ages efficient processing for interconnected streaming operators,
supporting determinism even with varying degree of parallelism.
In more detail, the contributions include (i) a generalization of
previous results (e.g., [12, 13]) in supporting efficient sharing and
synchronization among parallel threads, building on ScaleGate, an
established object for communication among operators in SPEs,
which has been shown to facilitate efficient deterministic fine-
grained stream processing; (ii) a novel, virtual shared-nothing state
manager that provides to each thread exclusive access to a por-
tion of an operator state while also allowing to efficiently change
ownership of such portions at runtime for elastic reconfigurations;
(iii) an extended API for ScaleGate, which we call ESG (elastic Scale-
Gate) and the algorithmic implementation for it, to allow dynamic
number of threads accessing it, as well as a protocol describing
the interactions between ScaleGate objects and the state manager
for load balancing, thread provisioning and thread decommission-
ing; (iv) correctness proofs for the determinism guarantees of the
methods and a model for the performance of virtual shared-nothing
parallelism; and (v) an extensive evaluation, empirically validating
our model, as well as showing that with the proposed methods,
fast work redistribution is possible, with minimal overhead both in
latency and throughput.

The paper is organized as follows: § 2 introduces preliminary
concepts, § 3 presents our system model and objectives. We outline
STRETCH in § 4 and provide algorithmic implementation details
and correctness arguments in § 5, § 6 and § 7. We model the behavior
of virtual shared-nothing parallelism comparing it also with shared-
nothing parallelism in § 8 and evaluate the model and STRETCH in
§ 9. We discuss related work in § 10 and conclude in § 11.

2 PRELIMINARIES

Data streaming. A data streaming continuous query (or simply
query in the remainder) is a directed acyclic graph (DAG) of streams
(carrying information) and operators (manipulating such informa-
tion). A stream is an unbounded sequence of tuples sharing the

H. Najdataei et al.

same schema composed by attributes (ts, A1, ..., Ap). Attribute
t.ts represents the (event) time at which the tuple has been created.
An operator is the minimum processing unit that defines at least
one input stream (delivering the tuples to be processed) and one
output stream (to forward the output tuples it produces).

Tuples sharing the same schema and being input to the same
operator can come from multiple sources or operators. Hence we
distinguish between physical and logical streams. The former rep-
resents one stream between a pair of operators while the second
represents the set of streams defining the same schema and carrying
the same type of information to the same operator. Following a com-
mon assumption in the streaming literature (e.g., [2, 10-12]), we
assume that each physical stream contains timestamp-sorted tuples.
If this is not the case, sorting tools such as [20] can be leveraged.
We use the term stream without specifying whether it is logical or
physical if it can be deduced by the context.

Streaming operators are distinguished into stateless and stateful.
Such a stateful operator, which we also use later in the paper, is
the Join [12]: it defines a left (L) and a right input stream (R) and
produces output tuples combining the attributes of tuples ¢; €
L and tg € R, for each pair of tuples (i1, tg) satisfying a given
predicate and being closer in time than a given window size WS
(i-e., |tp.ts — tg.ts| < WS). We assume that the timestamp of an
output tuple ¢, produced by a stateful operator is equal to that of
the latest processed tuple that triggers the output of ¢, (additional
timestamps related to the tuples contributing to t, can be other
attributes of t,’s schema).

Determinism. Deterministic execution of a sequential operator
requires that each processing step depends on the notion of event
time carried by the tuples themselves (attribute ¢s) and is affected
neither by the latency incurred in transmitting tuples from an op-
erator to another operator nor by the interleaving of tuples to an
operator with multiple input streams. For a parallel operator, deter-
minism is enforced when its results (for the same sequence of input
tuples) are equivalent to those of its sequential counterpart [10-12].
As explained in [11, 12], a sufficient condition for determinism for
both cases is to require merging the timestamp-sorted physical
streams delivering tuples to a stream and processing such tuples in
timestamp-order once they are ready, as defined in [11]: tl’ , being
the i-th tuple from timestamp-sorted stream j, is ready to be pro-
cessed when t{.ts < merge;s, where merge;s = mink{maxl(tlk.ts)}
is the minimum among the latest [tuple timestamps, one from each
timestamp-sorted stream k. ScaleGate [11, 12] is a shared data object,
leveraged and extended in this work, that (i) efficiently supports
concurrent deterministic merging of timestamp-sorted streams into
a timestamp-sorted stream of ready tuples, while (ii) allowing a
number of reader entities to consume all the ready tuples of the
latter stream. Its lock-free algorithmic implementation was shown
to facilitate efficient deterministic processing [11, 12, 30, 31].

Load Balancing and Elasticity. As discussed in [10], the computa-
tional cost of a streaming application varies over time, depending
on the rate with which input tuples are fed to it and depending on
the tuples’ data distribution. Because of this, a parallel execution
in which the distribution of work to threads is statically decided at
deploy time can lead to imbalances in the work of threads. When

STRETCH: Elastic Deterministic Streaming Analysis

the overall work is unbalanced but could be carried out by the avail-
able threads as a whole, a load balancing adaptive reconfiguration
is needed to change the work distribution. If more threads are to
be provisioned, the new work distribution should also assign some
work to the newly allocated threads. Notice that it is essential to ad-
just resources such as threads, since over-provisioned systems can
lead to high latency [30] or unnecessary costs [10]. Because of this,
elastic reconfigurations should also be triggered when the work can
be done by fewer threads (independently of whether they are imbal-
anced), thus decommissioning some threads and changing the work
distribution. We use the term reconfiguration to refer to any of these.

3 PROBLEM MODELING AND OBJECTIVES

State, buckets and streaming parallelization model. We target a
general-purpose intra-node streaming tool, where users can imple-
ment parallel stateful analysis, without explicit handling of com-
plexities inherent to determinism or fast reconfigurations. We adopt
a known parallelism model of the literature [7, 8, 10, 28], that allows
users to define and maintain the state of a streaming operator over a
set of buckets. Each bucket, a fine-grained portion of the operator’s
state, can be accessed and updated (based on the tuples being pro-
cessed) by one of the threads that run instances of the operator. The
number of buckets of an operator is commonly chosen to be greater
than that of the maximum threads that can be in charge of running
its instances. The portion of state assigned to each thread is thus
a partition of the operator’s buckets. In the following, M refers to
a buckets-to-threads mapping function, where M[k] denotes the
thread id to which bucket k is assigned to.

In relation to the twitter example (§ 1), the state of an operator
running such analysis could consist of per-hashtag indexes (of the
next word to find) and counters (of sequences matched so far). To
maintain such state, the user could assign each hashtag to exactly
one bucket (e.g., using a hash-function) and parallelize the analysis
by letting each parallel thread update the indexes and counters of
hashtags contained in the buckets assigned to it.

Notice that the state of an operator can depend on all the tuples
observed so far, or on a window of them, as in the case of stream
Joins (§ 2). In this sense, the problem does not impose any restriction
on the length of such portion. As discussed in § 1, we aim at a
parallelization approach in which users do not need to partition
input tuples to threads (as in key-by partitioning). In turn, this does
not limit the problem to a type of parallelism in which each parallel
thread runs the same analysis on different portions of input data.
The stream join we use as one example (§ 4.3) presents such a case,
in which all parallel threads carry out some of the processing for
all input tuples.

Execution epochs. Under the assumption that all threads are fed
with the same sequence of tuples, a reconfiguration implies a change
in M to hold true from a certain tuple onward. We use the term
epoch to refer to the period spanning tuples in between two event
times (i.e. between timestamps of a pair of tuples), during which
the mapping of buckets to threads does not change. Hence, being
E; the current epoch, TI.P the set of processing threads and M; the
mapping in E;, a reconfiguration implies the beginning of a new
epoch E;4; for which a new mapping M;; is used for a (possibly
different) set of processing threads Tf_:l.

DEBS ’19, June 24-28, 2019, Darmstadt, Germany

Problem statement. Our goal is a framework that can facilitate the
programming of stateful analysis when efficient parallelism cannot
be simply achieved by partitioning input tuples to threads (e.g., as
in key-by partitioning). From an SPE perspective, and with the goal
of combining the benefits of shared-nothing and shared-memory
approaches, we aim at designing and implementing a framework
for intra-node parallel and reconfigurable stateful analysis with the
following objectives:

O1 A programmable interface that does not require thread-safe
programming of stateful analysis (i.e., as in shared-nothing
parallelism), thus granting exclusive read and write access to
a portion of the operator’s state (i.e., a portion of the buckets
maintaining it) to each parallel processing thread.

02 Support for deterministic sharing of all input tuples to all pro-
cessing threads in the same order (without requiring the user to
define any input tuple partitioning scheme) and deterministic
merging for all threads fed by multiple streams.

O3 Support for fast reconfigurations.

We do not place restrictions on the logic with which reconfig-
uration actions are taken. Instead, we assume the existence of an
external orthogonal policy in charge of triggering the reconfigu-
rations. One such policy, triggering reconfigurations based on the
threads’ CPU consumption is used in our evaluation (§ 9).

Notice that, in contrast to objective O3, which can be only evalu-
ated empirically, O1 and O2 can be met if a set of sufficient properties
is satisfied [10-12, 30], distinguished into intra-epoch and inter-
epoch ones (i.e. to hold within each epoch, respectively when transi-
tioning from E; to E;1). Intra-epoch properties to be enforced are:

P1 All threads observe all input tuples in the same order.

P2 For a given mapping M;, each thread has exclusive read/write
access to the bucket(s) mapped to it.

P3 The tuples received by any thread from multiple streams are
merged into a sequence of tuples processed by the thread once
ready.

Additional, inter-epoch properties to be enforced are:

P4 If a bucket is mapped to a processing thread p; in epoch E;
(i.e., if such a bucket is potentially modified based on the tuples
processed by p1) and to processing thread ps in epoch Ej.i1,
then the first tuple belonging to E;41 is processed by p after
the last tuple belonging to E; is processed by p;.

P5 Each reconfiguration takes place atomically (either by being
applied in its entirety or not being applied).

P6 Tuples sharing the same timestamp belong to exactly one epoch.

4 OVERVIEW OF STRETCH

Figure 1 outlines STRETCH’s overall architecture, utilising as main
components the State Manager (SM) and Elastic ScaleGate (ESG)
objects. For ease of presentation of the STRETCH’ and SM’s archi-
tecture and functionality, before outlining them in § 4.2, we outline
the ESG’s API and functionality in § 4.1. In § 4.3, we provide an
example implementation for a join operator, which we also use in
the experimental evaluation.

DEBS ’19, June 24-28, 2019, Darmstadt, Germany

§ oo § <— Input threads, each delivering a stream of timestamp-sorted
input tuples

<«— Merge the timestamp-sorted input streams into one
timestamp-sorted physical stream of ready input tuples
Timestamp-sorted, ready input tuples
Retrieve buckets (based on M)

g ks
@ <— Maintain buckets, providing the processing

threads virtual shared-nothing parallelism

\L <«— Stream of timestamp-sorted output tuples produced by
each processing thread

<— Merge the timestamp-sorted output streams of each
processing thread into one timestamp-sorted physical
stream of ready output tuples

<— Timestamp-sorted, ready output tuples

. g <— Output threads, consuming the timestamp-sorted ready
g ° output tuples

Figure 1: Overview of STRETCH.

4.1 The Elastic ScaleGate (ESG) data object

As mentioned in § 2, the Elastic ScaleGate, ESG, extends ScaleGate,
which allows (i) a number of source threads to each insert in it
a timestamp-sorted stream of tuples, and (ii) a number of reader
threads to retrieve ready tuples from it in timestamp order, through
the methods addTuple and getNextReadyTuple, respectively. They
both encapsulate the necessary communication between sources
and readers, to know whether a tuple is ready or not.

o addTuple(tuple,sID): allows a tuple from source sID to be merged
by ScaleGate in the resulting timestamp-sorted stream of tuples.

o getNextReadyTuple(rID): provides to the calling reader rID the
next earliest ready tuple that has not been yet consumed by rID.
Note that each tuple, once it becomes ready, will be returned to
all readers invoking the method.

For ESG, the API extension to enable changes in the sets of threads
is listed below, outlining the additional methods and their behaviour,
while their algorithmic implementation is described in § 7.

e announceReaders(List reader_IDs, rID): can be invoked by an
existing ESG reader rID. The new readers can return ready tuples
starting from the one that rID returned before calling this method.

e removeReaders(List reader_IDs): removes the denoted list of
readers from ESG.

e announceSources(List source_IDs, min_ts): adds new source
threads. To comply with the requirements for the identification of
ready tuples, the method expects min_ts, the earliest timestamp
the new sources can add, to be greater than the timestamp of the
latest tuple retrieved by any reader when the method is invoked.

e removeSources(List source_IDs): removes from ESG the list of
sources source_IDs. Any potential new tuple insertions by the
latter will be ignored.

For all the above, among concurrent invocations and subsequent
invocations with the same parameters, only one succeeds.

4.2 The STRETCH framework’s architecture

Recalling from Figure 1, STRETCH uses a State Manager (SM) and
two ESG objects, i.e. one for input tuples (ESG;,) and one for output
tuples (ESGoyt). Several threads interact with these components:

H. Najdataei et al.

input threads deliver input tuples to ESG;p,, processing threads pro-
cess input tuples and interact with SM, delivering results to ESGoy¢,
while output threads retrieve the output tuples delivered to ESGyy;.
Despite not discussed for simplicity, STRETCH also defines a thread
pool for provisioning and decommissioning. For ease of explanation,
we focus our description on the parallel, elastic and deterministic
execution of one stateful operator. The description extends for mul-
tiple operators, considering that the input (resp. output) threads
of an operator are the processing threads of its upstream (resp.
downsteam) peers.

To instantiate an operator, the STRETCH user initially provides:

{Moy, TOI, Téj, TOO, Bucketlmpl, filter}

M) defines the overall number of buckets and their initial mapping
to the processing threads of epoch Ey, while TOI , Té’ and TOO are the
sets of input, processing and output threads for epoch Ey, respec-
tively!. At runtime, each bucket is an instance of the BucketImpl
class, defined by the user to implement the stateful analysis’ logic.
The class BucketImpl is expected to define a method process (to
be invoked by TOP)- The filter function, for each thread p and each
tuple ¢ the thread works on, aims at filtering out the buckets of p
that need not be updated due to t. Shortly in this section we outline
how filter can be used to speed-up the analysis. Once a stateful
operator is instantiated, STRETCH defines the method:

switchEpoch(M)

which will change the mapping of buckets to threads (and the
number of threads, if the reconfiguration is provisioning or de-
commissioning them). STRETCH relies on special tuples, named
epoch-switch tuples to perform an epoch switch.

Each bucket is assigned to exactly one thread based on M. TT
(Alg. 1) are the source entities for ESG;y, TP (Alg. 2) are the reader
and the source entities for ESG;, and ESGyy;, respectively, and 7O
(Alg. 3) are the reader entities of ESGoy¢-

Algorithm 1: Input threads (T) - main loop

1 while executing do
2 L retrieve / produce next tuple ¢

3 add t to ESG;p,

T! threads deliver each tuple (e.g., retrieved from the network
or another operator) to ESG;, (Alg. 1, L 1-3). At the same time,
each TP thread p retrieves each next ready tuple ¢ (Alg. 2, L 2) and
checks whether ¢ is an epoch-switch tuple or a regular one (Alg. 2,
L 3). In the former case, p stores ¢ to later trigger a reconfiguration
(Alg. 2, L 4), at an appropriate time-point, to ensure determinism.
In the latter case, the norm is to invoke process if needed; however,
p first checks if t signifies the appropriate time-point to trigger
reconfiguration, i.e., it checks whether there exists some previously
stored epoch-switch tuple yet to be processed and if ¢’s timestamp
is greater than (i.e. not equal) that of the previous regular tuple
(prev_ts). If so, p requests a new epoch, synchronizing with both
ESGs and the SM (we provide details on synchronization in § 6) and
retrieves the buckets mapped to it in such new epoch (Alg. 2, L 8- 10).

IWe will skip index i for TT, TP, TC, M in contexts not focusing on a specific epoch.

STRETCH: Elastic Deterministic Streaming Analysis

Algorithm 2: Processing threads (T*) - main loop

1 while executing do

2 retrieve t from ESG;,,

3 if ¢ is an epoch-switch tuple then

4 L store ¢ in list pendingEpochSwitchTuples

5 else

6 if t is the first regular tuple ever processed then

7 L get buckets assigned to this thread

8 else if pendingEpochSwitchTuples is non-empty and

t.ts > prev_ts then
9 L trigger the epoch switching protocol (Alg 7)

10 get buckets assigned to this thread in new epoch

11 for BucketImpl b returned by filter(buckets,t) do
12 Tuple[] outs = b.process(t)
13 add outs to ESGoy ¢

14 prev_ts =t.ts

Algorithm 3: Output threads (T°) - main loop

1 while executing do
2 L retrieve next tuple ¢ from ESGoy, ¢

3 process / forward ¢

Eventually, p proceeds traversing the buckets returned by the filter
function, invoking the process function on them and delivering any
output tuple to ESGoy; (Alg. 2, L 11- 13). In parallel, TO retrieve
and process (or forward) from ESG,; the tuples delivered by the
TP threads (Alg. 3, L 1-3).

The role of function filter: To provide a hint about its usefulness,
consider the analysis example in § 1 and one processing thread p.
On one hand, not all tuples need to be processed by p, only the
ones carrying at least one hashtag assigned to p. Moreover, not all
buckets of p need to be updated when p processes a tuple ¢, only
those that are about #’s hashtags assigned to p. At the same time,
any tuple carrying a timestamp falling outside the current window
can cause a window-shift and could thus trigger the production
of output tuples by p in a timely fashion. A sufficient (but not
optimal) brute-force strategy to ensure that the buckets assigned
to p are traversed when one of the above cases is given, is for p
to traverse all its buckets for each input tuple. Instead of that, for
efficiency, through the filter function, p can be instructed to traverse
its buckets only when a tuple ¢ carries hashtags assigned to p and
when ¢ falls outside the current window.

4.3 Example: STRETCH-implemented Join

Scale]Join is a stream join that perform deterministic and efficient
parallel stream processing. As described in detail in [12], in its paral-
lelization approach, each of the n processing threads is responsible
for running approx 1/n of the overall comparisons incurred by
each input tuple. This is achieved by having all processing threads
process each tuple but exactly one maintaining it in its local state,
thus being responsible for the comparisons of future tuples with it.
In STRETCH, this strategy can be implemented by having exactly

DEBS ’19, June 24-28, 2019, Darmstadt, Germany

one bucket (and thus exactly one thread) responsible for storing
each tuple. Alg. 4 presents how the BucketImpl class can implement
ScaleJoin’s semantics. Whenever process is invoked, the tuple is
used to purge the opposite window, check the predicate against
the tuples of the opposite window and eventually adds itself to its
window if the counter modulo the number of buckets (B) is equal to
the thread id. Since each input tuple needs to be compared with all
the tuples stored in any bucket, the filter function (Alg. 5) returns
the entire set of buckets of the processing thread. Alg. 4, once run
by STRETCH, guarantees the join semantics, since:

(1) The method process of each bucket, is invoked for all the tuples
taken from ESG;, in the exact order in which such tuples are
retrieved and is never invoked concurrently (for a given bucket)
by two or more threads (Theorem 5.1).

(2) By (1) we have that all buckets update the counter consistently.

(3) By (1) and (2) we have that each tuple is stored in exactly one
bucket.

(4) By (1) and (3) we have that each stored tuple is compared with
all the tuples needed, according to the join semantics.

Algorithm 4: BucketImpl class for ScaleJoin [12]

1 Tuple[] WR, WL (portions of the global state in the bucket)
2 counter = 0 (replicated part of the global state, in each bucket)

3 Function Tuple[] process(Tuple ¢)

4 increase counter

5 purge t’s opposite stream window

6 for each t’ in t’s opposite stream window do
7 if predicate holds for t and t’ then

8 L add (¢, t’) to results

9 if this bucket index % B == counter then
10 L store ¢ in t’s stream window
1 return results

Algorithm 5: filter function for ScaleJoin [12]

1 Function BucketImpl[] filter(Bucketlmpl[] b,Tuple #)
2 L return b

5 INTRA-EPOCH PROCESSING

We detail here how the data structures and threads presented in
§ 4 interact within each epoch, i.e., for a given mapping M. We first
introduce the API of SM and then show how, by the processing
defined for the processing threads, STRETCH satisfies the intra-
epoch properties listed in § 3, namely that all processing threads Tp
(i) observe all input tuples in the same order (P1), each with exclu-
sive read/write access to its buckets (P2) and (ii) produce streams
of output tuples that are deterministically merged into a logical
sequence of output tuples (P3). The description is later extended
in § 6 for inter-epoch processing. SM’s API methods are:

o setup(Mp,BucketImpl): initializes the SM associated to the state-
ful operator. Based on My, SM knows how many buckets should
be maintained and the thread id to which each one is assigned to
initially.

DEBS ’19, June 24-28, 2019, Darmstadt, Germany

o getBuckets(Thread id): used by the processing threads to retrieve
the buckets assigned to each one of them for the current epoch.
e requestNewEpoch(M): announces to SM the intention of starting

a new epoch using the mapping M.

Alg. 6 presents the SM implementation for methods setup and
getBuckets. The method requestNewEpoch(M) is presented in de-
tail in § 6. Method setup is invoked when the stateful operator is
instantiated and relies on M for the mapping of buckets to threads
during epoch Ey. Internally, the SM creates as many instances
of the given BucketImpl class as buckets defined in My. Method
getBuckets is then invoked by Tg’ threads to retrieve the buckets
assigned to them based on M. As shown in Alg. 6, the method re-
turns a set of (pointers to) buckets. Hence, the state of the stateful op-
erator as a whole is not composed by disjoint partitions maintained
locally at each thread, but rather defined in a single array of buck-
ets, whose elements are assigned to TOP threads. Assuming shared
memory, this enables virtual shared-nothing parallelism since each
TOP thread has exclusive access to its buckets but, at the same time,
buckets can be re-assigned to threads without state transfer.

Algorithm 6: SM implementation

1 BucketImpl[] buckets

2 Function setup(M,,BucketImpl)

3 store My

4 fori=1... size(Mp)do

5 L store new BucketImpl instance in buckets[i]

6 Function BucketImpl[] getBuckets(Thread id)
7 BucketImpl[] threadBuckets

8 fori=1... size’M)do

9 L if M[i]==id then

o]

L add a pointer to buckets[i] to threadBuckets

11 return threadBuckets

5.1 Enforcing properties P1-P3 in E,

At this point, we argue that STRETCH satisfies properties P1-P3
during the first epoch Ey (i.e. from the moment a certain stateful
operator is deployed, to its first reconfiguration or for the entire
execution of a parallel operator with a static mapping of buckets
to threads). It should be noticed that, since no reconfiguration is
defined before Ey, the behavior of the two ESGs is equivalent to
that of the base ScaleGate. This argumentation is later extended to
any epoch E; by induction, after showing that properties P4-P6 are
met when transitioning across epochs.

THEOREM 5.1. STRETCH satisfies properties P1-P3 in Ey.

PRrOOF. (Sketch) Property P1 is satisfied by leveraging the ESGjy,
and Alg. 2, since the former delivers all input tuples (once ready)
in the same order to all Té) threads while the latter does not dis-
card any input tuple. Property P2 is enforced by Alg. 2 and the
SM’s implementation (Alg. 6) since the former retrieves the buckets
exactly once (upon processing of the first tuple) while the latter
returns each bucket to one and only one thread in TOP . Property

P3 is satisfied because each thread in T(f) delivers a non-decreasing

H. Najdataei et al.

timestamp-sorted stream of output tuples and the merging of such
streams is carried out deterministically by ESGyy;.]

6 INTER-EPOCH PROCESSING

Here we describe how STRETCH transitions from one epoch to an-
other, while guaranteeing properties P4-P6 (§ 3). We first give a high
level description of the protocol and later provide more detail and
we prove that properties P4-P6 are met while switching from epoch
E; to epoch E; 1, thus extending Theorem 5.1 to any epoch E;.

At this point recall that input tuples can be of type regular or
epoch-switch. The former refers to regular tuples, the latter refers to
special control tuples used by STRETCH when switching epochs. In
a nutshell, when a special epoch-switch tuple t* is received in E; by
the Tl.P threads, the epoch switch protocol is triggered as soon as the
first regular tuple with a timestamp greater than the latest times-
tamp observed before t* is received (as also shown in Alg. 2 L 8-10).
As we further elaborate in the following, this implies that property
P6 holds. Independently of the nature of the switch from epoch E; to
epoch E; 1 (i.e., decommissioning, load balancing or provisioning),
all TiP threads invoke the method requestNewEpoch(Mapping M)
of SM and block there until the method returns. When threads are
provisioned, one of the current TiP threads activates the necessary
new threads from the thread pool and connects them with ESG,y,
and ESG;,,. When threads are decommissioned, the latter are discon-
nected from ESG;, and ESGyy,; and are returned to the thread pool.

6.1 Switching epochs

As outlined in § 4, STRETCH provides the method switchEpoch(M)
to express the intention of switching the current epoch E; to the
epoch Ej41, in which mapping M is enforced. When this function is
invoked, an epoch-switch tuple carrying M is inserted in ESG;, by
each TiI thread. For each TiI thread, the timestamp of such epoch-
switch tuple is set to that of the latest tuple added to ESG;, by
the Tl.I thread. This, combined with the definition of ready tuples,
implies that at least one of these epoch-switch tuples is immediately
ready for Tl.P threads process.

As shown in Alg.2, all epoch-switch tuples retrieved by a thread
in TI.P are initially stored in its local list pendingEpochSwitchTuples
(L 4). At any execution point, there could be many epoch-switch tu-
ples stored by Tl.P threads, either referring to the same switchEpoch
invocation (remember all TiI threads forward one such tuple) or to
different invocations of the switchEpoch method (if the latter is
invoked when pending epoch transitions are still to be completed).
Each TI.P thread checks whether one or more epoch-switch tuples
are in pendingEpochSwitchTuples, only when an incoming regular
tuple t with a timestamp greater than (i.e. not equal to) the previous
one is retrieved from ESG;,, (§ 4). Since all Tl.P threads retrieve all
tuples in the same order from ESGjp, all TI.P threads have the same
set of epoch-switch tuples with timestamp equal to or smaller than
t.ts in their pendingEpochSwitchTuples lists at the time 7 is pro-
cessed. Because of this, if one or more epoch-switch tuples exist in
pendingEpochSwitchTuples upon processing of ¢, the most recent
epoch-switch tuple t* referring to Ej (j > i) is processed (if any),
while the rest of them are discarded.

Alg. 7 presents the steps followed by the TI.P threads to switch
epoch. First, the most recent unprocessed epoch-switch tuple ¢* is

STRETCH: Elastic Deterministic Streaming Analysis

Algorithm 7: Switching epoch protocol (for a thread in TiP
upon retrieving of t)

1 retrieve most recent epoch-switch tuple ¢* to be processed from
pendingEpochSwitchTuples and discard the rest

2 if t* refers to E; where j > i then

3 SM.requestNewEpoch(¢*.M) // blocking call

4 if t*. M requests provisioning of threads then

5 ESGopyy.announceSources(new threads ids, 7.ts)

6 L ESGip.announceReaders(new threads ids, this thread id)

N

else if t*. M requests decommissioning of threads then
8 ESG;y.removeReaders(removed_ids)
ESGoyt.removeSources(removed_ids)

Algorithm 8: Method requestNewEpoch(M) (SM)
1 Method requestNewEpoch(Mapping M)

2 block until the union of processing threads for this epoch invokes
this method
3 use M as mapping from now on

retrieved and the rest of epoch-switch tuples are discarded from
the pendingEpochSwitchTuples. Then, if t* belongs to E; where
J = i, the blocking method requestNewEpoch of SM (Alg. 8) is
invoked by all TiP threads passing the new mapping t*.M. This
method will change the mapping used by SM to t*.M as soon as all
the TiP threads have invoked the method. If the set of processing
threads defined by t*.M is larger than that of the current epoch (i.e.,
if threads are to be provisioned), then these are announced by all Tl.P
threads as sources to ESGyy; and readers to ESG;j,. Alternatively,
if the set of TiP threads defined by t*.M is smaller than that of the
current epoch (i.e., if threads are to be decommissioned), methods
removeReaders and removeSources are invoked for ESG;, and
ESGouy:, respectively.

6.2 Satisfying properties P4-P6 from E; to E;;

THEOREM 6.1. STRETCH satisfies properties P4-P6 when switching
fromE; to Ej41.

Proor. (Sketch) In order to prove P4 is satisfied, it should be
noted that, based on Algs. 2, 7 and 8, the following invariants hold:

(1) unique regular tuple 7, that is seen in the same relative position
in the stream by all threads of E; and that distinguishes epochs
(i.e. mapping of buckets to threads); 7 is the first tuple of the
new epoch. Specifically:

(a) Vt'|t’.ts < t.ts,t’ € old epoch
(b) Vt”|t".ts > t.ts,t” € new epoch

(2) Let out(t) denote the set of output tuples triggered by a tuple t.
Then:

(a) Vt'|t’.ts < T.ts, out(Z) is read by threads TO after out(t’)
(b) Vt”'|t" .ts > T.ts, out(t”’) is read by threads TC after out(%).

Moreover, such 7 is chosen to be the first regular tuple with a times-

tamp greater than (i.e. not equal to) the previous one (observe that

t, as all tuples in ESG, is seen by all Tl.P). This, together with the

assumption on output tuples timestamps and the fact that ESG

DEBS ’19, June 24-28, 2019, Darmstadt, Germany

preserves ordering, implies P6. Finally, note that, while multiple
epoch-switch tuples can be stored at the same time, two threads in
TZ.P cannot be more than one epoch away because of the blocking
method requestNewEpoch; this implies P5. O

6.3 Satisfying properties P1-P3 in E;, Vi > 0
THEOREM 6.2. Vi > 0, STRETCH satisfies properties P1-P3 in E;.

Proor. (Sketch) All the T? threads of epoch E; process all tuples
in E;. This is because of one of the following cases: (i) If threads
have been provisioned for E;, the new readers can return ready tu-
ples starting from the latest ready tuple gotten by the calling reader
that succeeded to execute announceReaders, which is t (Alg. 7 pre-
condition (caption), and L 5-6). Hence the new readers will retrieve
their assigned buckets before processing t (Alg. 2 L 7). The new
threads are also already registered as sources to ESGoy: (Alg. 7
L 5-6), so if the processing of ¢ or any subsequent tuple triggers
any output tuple, the latter will be deterministically delivered by
ESGour once ready. (ii) Alternatively, if threads have been decom-
missioned, threads only existing in E;_; are no longer readers of
ESGip or sources of ESGoy, (once one of the calls by any existing
threads to methods removeReaders and removeSources has com-
pleted) and have terminated. Hence, properties P1-P3 hold in any
arbitrary E; as they do in Ej. O

7 ALGORITHMIC IMPLEMENTATION OF ESG

ESG, similarly to ScaleGate, builds a list where tuples are main-
tained in timestamp order, along with some auxiliary book-keeping
structures. The protocol for adding and accessing tuples is cus-
tomized for the needs of data streaming operator pipelines. Recall
that each source thread adds tuples in timestamp order, while each
reader traverses the sorted stream of tuples, so that each tuple ¢
will be returned to each invoking reader, once ¢ becomes ready.
The algorithmic implementation of all the methods is outlined be-
low. The addTuple and getNextReadyTuple methods are similar to
ScaleGate’s [11, 12], while the methods to modify the set of threads
accessing the object are new.

Ready tuples that can be ¢ 3 Tuples that

Head retrieved by readers arenot ready Tail

Reader's —»
handle

<«— Source’s

handle

Reader Reader Source Source

Figure 2: ScaleGate’s and ESG’s skip list, and readers’ /
sources’ handles.

addTuple, getNextReadyTuple: The algorithmic implementa-
tion constructs a skip list, with auxiliary book-keeping structures
—essentially acting as thread-specific data for the sources and
readers— and fine-grained synchronization to avoid global lock-
ing. The book-keeping structures contain handles to the skip list,
for sources and readers, to continue inserting or reading nodes
(tuples) respectively. As shown in Fig. 2, readers” handles traverse

DEBS ’19, June 24-28, 2019, Darmstadt, Germany

the list from head to tail, retrieving the next tuple only if the
latter is not pointed by a source’s handle (thus returning only
ready tuples). At the same time, sources’ handles point to their last
inserted tuples and facilitate the sorted insertion of subsequent
tuples (also leveraging the skip list shortcuts). Since each source
adds a timestamp-sorted stream, each next insertion “falls” after
its previous one (i.e., closer to the tail). All the tuples before (i.e.,
with earlier timestamps) the earliest tuple pointed by the source
are ready.

announceReaders(List reader_IDs, rID), removeReaders(List
reader_IDs): As mentioned above, a reader has access to one of
ESG’s nodes through its own handle. A new reader p to the ESG
simply needs a handle to a node that is ready, so that p can safely
traverse the rest of the list in timestamp order in subsequent get-
NextReadyTuple invocations. Since announceReaders is called by
an existing reader, the caller’s handle to the most recently read
node of such reader is used, so that all the new readers have a
handle to the ESG. Removing a reader is as simple as removing
the thread-specific structures of that reader.
announceSources(List source_IDs, min_ts): A new source to
be registered in ESG needs its own related book-keeping struc-
tures, i.e. its own handles, which essentially can be copying the
handles of an existing source. for the sake of the new thread, an
initial dummy tuple with timestamp min_ts is inserted, to initialize
the functionality of its handles. Dummy tuples are not returned as
ready to readers invoking getNextReadyTuple, but enable other
tuples with smaller timestamps to be characterized as ready and be
returned to readers. At this point it is useful to recall that the an-
nounceSources operation is called for ESG,, after the processing
thread has returned from the blocking method requestNewEpoch
(Alg. 8) with min_ts = t.ts, thus ensuring that the source calling
announceSources on ESG,y; is still pointing to a tuple with a
timestamp smaller than min_ts, thus guaranteeing the method
is always invoked with appropriate timestamp for the respective
parameter (cf. also Theorem 6.2). Adding more than one source at
a single time is delegated to a single thread that will add a block
of new book-keeping structures and dummy tuples (each pointing
to the respective new sources).

removeSources(List sources_ids): Removing a source consists
mainly of adding, on behalf of the source, a specially marked flush
tuple in ESG, with timestamp equal to the latest insertion of the
source. The effect of such tuple is that it will essentially push the
previously added tuples of the leaving source to be ready and
the removed source’s associated book-keeping structures can be
removed. As with dummy tuples, flush tuples are not returned as
ready by getNextReadyTuple. For the removal to be safe without
loosing tuples, it should be invoked when it is known that the
source does not have pending insertions of ordinary tuples. In
STRETCH this is ensured by the invocation of the method in Alg. 8.

Concurrent calls of the same method that updates the set of
threads (e.g. concurrent calls to announceReaders), or similar calls
in the same epoch may happen; synchronization is in place (using
a TestAndSet variable) so that only one of each type takes effect.
Concurrent calls among competing such methods (e.g. announc-
eReaders and removeReaders) are not supposed to happen, as they
both need to modify the thread-specific book-keeping structures

H. Najdataei et al.

(indeed such invocations are not done in STRETCH). If an ESG
implementation wants to allow that, it will need to enforce syn-
chronization to protect consistency; since these are low-contention
operations, a simple lock can do. If regular operations (to add and
get tuples) are concurrent with those that update the set of threads
and the respective book-keeping structures, the latter can over-
write, causing the former to have no effect. Note that their use in
STRETCH imply that such invocations do not interfere.

8 MODELLING STRETCH’S PERFORMANCE

Before evaluating STRETCH, we model in this section the expected
scalability behavior of its virtual shared-nothing parallelism (Vsnr)
and that of pure shared-nothing parallelism (Psny).

Let us consider a setup in which three threads ¢/, t* and t© are
defined for TI, TP and T9, respectively. Moreover, let us assume
that d!, d¥ and d© are the per-tuple expected processing times
for t!, t¥ and t©, respectively. If we aim at scaling the analysis
of these threads by provisioning more threads to TF, then ¥ is
the bottleneck of the pipeline. That is, df = max(dI, dP, do). Oth-
erwise, the threads to be provisioned should be dedicated to T!
if dT = max(d,d?,d®), or TC if d° = max(d’,d¥,d®). If we opt
for Psn, we need to define a mechanism for #! to route tuples to
TP’s threads. The routing overhead will depend on the semantics
of the stateful operator (e.g., if key-by partitioning can be leveraged
or if tuples should be broadcast to T?’s threads). A mechanism to
merge-sort deterministically tuples at t© is also required. When n

threads are defined for TF, we refer to d& . df and dM
n,PsN’ "n,PsnN n,Psn

as the time spent by #! to route tuples, the new per-thread pro-
cessing time of T"’s threads and the time spent by t© to merge
tuples deterministically. If, alternatively, we opt for STRETCH'’s
VsN, we are not required to route tuples, since all of them can be
directly accessed by TF’s threads, but we need to account for the
synchronization and congestion overheads incurred by ESG;, and
ESGou: to share tuples and support determinism. In this case, when

n threads are defined for TF, we refer to d€ ,df and dM
n,VsN’ "n,Vsn n,VsNn

as the synchronization and congestion overheads incurred by #/,
the new per-thread processing time of TF’s threads and the time
spent by t© to merge tuples deterministically.

As discussed in [11, 12], we expect aM < dM since the
n, VSN n»PSN

merging-sorting costs can be distributed to all T¥ threads in the
Vsn case. Because of such costs, and because of the possible extra-
costs incurred by TP’s threads to chose which tuples to process,

nonetheless, we also expect ar > af . Finally, we also
n,Vsn n,Psn
C R
expect dn’ Ven < dn,PSN
ESG data structures [11]. Based on this, we thus expect Psp to scale

to the highest n so that:

P _ I R
dn,PSN = max(d" + dﬂ,PSN

for efficient implementations of the shared

P O M
’ dn,PSN’ d=+ dn,PSN)

Similarly, we can expect Vs to scale to the highest n so that:

P _ I C P O M
dﬂ, Vsn — max(d” + dn, Vsn> dn, Vsn? d” + dn,VSN)

Hence, Vs allows for better scalability than Ps for all n so that:
{dI +dC, <df
n,Vsn

0, M niJVSN
d> + dﬂ, Vsn < dn,VSN

STRETCH: Elastic Deterministic Streaming Analysis

25

Area in which Vm\

scales better than Psy

Scalability

Parallelism (# threads)

Figure 3: Scalability estimation based on the model

P [jO[4P P R C M M
d d dn,PSN dn,VSN dn,PSN dn, VsN dn,PSN dn,VSN
P P

t6d’|d’| 4 | < |0.1d"n|0.01d"n|0.1d"nlog(n)|0.01d" nlog(n)
Table 1: Model’s variables sample costs for Figure 3

Figure 3 shows how Ts, TP’s and TO’s threads scale, based on
this model, when variables are set as specified in Table 1. In this
case, the n - log n factor in dMP and dM_ models the merge-

n,Psn n,Vsn

sorting costs, while ds’ Psn has an n factor to model the cost of
broadcast communication (later evaluated in § 9).

For simplicity, the figure shows T!’s and TO’s max rates’ scal-
ability without accounting for bounded communication queues
among threads nor mechanisms such as flow control. Also, since
we assume in this model the existence of a single thread in T! , we
do not explicitly account for Pgy for the additional costs needed to
merge tuples at TT’s threads if the latter are forwarded by multiple

physical streams.

9 EVALUATION

We first empirically validate the model of § 8, including virtual
shared-nothing parallelism Vs (in STRETCH) and shared-nothing
parallelism Psp (in Flink), for both synthetic and real-world data,
from Twitter. Then, we evaluate STRETCH’s performance for the
ScaleJoin usecase (§ 4.3) and compare it with that of the original
implementation [12], focusing on intra-epoch throughput and la-
tency for the maximum sustainable rate and studying the scalability
for increasing number of threads. Lastly, we evaluate STRETCH’s
elasticity by provisioning/decommissioning threads, measuring the
reconfiguration time and its effect on throughput and latency.

Evaluation setup. Experiments run on a 2.10 GHz Intel(R) Xeon(R)
E5-2695 CPU with 2 sockets (each with 18 cores), 72 logical threads
with hyper-threading and 64 GB memory. STRETCH is implemented
in Java and tested with Java HotSpot(TM) 64-Bit Server VM with
default garbage collection settings. For Psn, we use Flink 1.6.0.

All experiments show the average end-to-end latency and through-
put over five distinct runs. The former is the timestamp difference
of each output tuple and the latest input tuple that contributes to it.
To compute the latter, we let input streams inject tuples at full speed
while using flow control to handle backpressure. The implemented

DEBS ’19, June 24-28, 2019, Darmstadt, Germany

flow control mechanism is similar to that of Flink, where the rate
of a stream is adjusted by an intermediate bounded queue.

9.1 Vsy vs Psy scalability - synthetic dataset

To evaluate our model (§ 8), we used two synthetic queries in Flink.
In our implementation, d’ is approximately 0.7 msec (i.e. it takes
0.7 msec for ¢! to create and forward an input tuple). Following
the costs presented in § 8, the values of all parameters are then
calculated for different number of threads for TP . Flink dedicates
one thread per source, per parallel instance of an operator, and
per sink. To match the number of threads used by Flink to that
of STRETCH, we define one source for each T! thread, we set the
operator parallelism to the number of TP threads, and define one
sink for each T© thread. We use Flink’s broadcast primitive to share
tuples between the sources and the parallel operator instances.

Figure 4a shows the evalution results. To compare the observed
behavior with that of the model, the figure also includes the ex-
pected scalability based on the model (i.e. as in Fig. 3). As shown,
the throughput figure of Psn matches the corresponding one from
the model. The behaviour of Vgp also matches that of the model
(despite the larger deviation between the observed and expected
behavior due to the higher overheads in the system). For both Vs
and Psy, the rate of TF threads grows to match that of T! while the
latency decreases due to the smaller delay for tuples to be processed.
Vsn achieves higher throughput and lower latency than Pgy, as
also expected based on the model. Once TO’s threads become the
bottleneck of the pipeline, further increasing the number of threads
for TP results in a growing latency. In this case, the buffers used
to handle the backpressure by Flink (not discussed in our model)
stabilize the latency by controlling the input rate.

9.2 Vsn vs Psy scalability - Twitter dataset

In this case, we study the maximum throughput for a determin-
istic operator with two logical streams. TP threads pass tuples
downstream without performing any processing. By removing the
processing cost, the maximum throughput is then given either by
the speed of T!’s threads or the sorting costs of T¥ or T threads.
We create two similar queries in Flink (as Psn) and STRETCH (as
VsN), and process a dataset consisting of 4.3 million tweets, be-
tween the 15¢ and 2" of October 2018. Also in this case, our Flink
implementation is defined so that the number of threads used to
forward and process tuples matches STRETCH’s one. We use two
threads for T! to read and forward input tuples. In STRETCH, since
TP and TO threads receive tuples from ESGs in timestamp order,
there is no need for sorting. However, in Flink, TP and TO threads
are responsible for sorting the tuples to support determinism.

Figure 4b shows the operators’ scalability. For an increasing
number of TP threads, STRETCH faces a slight decrease in through-
put due to the synchronization overheads induced by the higher
number of threads. Psy in Flink starts from a lower throughput
and decreases faster for an increasing number of threads. Moreover,
the average latency in Py in Flink, regardless of the number of
TP threads, is higher than 200 msec, while Vsn’s in STRETCH’s is
always less than 20 msec.

DEBS ’19, June 24-28, 2019, Darmstadt, Germany

1200 140000 STRETCH
- 1000 ;r" VCS/N/) & 120000
0 mode =
= 800 Vs (STRECH) < 100000
] 2 80000
£ 600 =
= 2 60000
o
2 400 » £ 40000
= " Psn [Flink
200 (model) 20000
0
80 1200
1000 Flink
® 60 m
E £ 800
> >
g 40 g 600
Q Q
© ® 400
S 2 —
200
Vsn (STRECH) STRETCH
0 0
10 20 30 20 40 60
Parallelism (#threads) Parallelism (#threads)
(a) Synthetic workload (b) Twitter

Figure 4: Throughput and latency of Vs and Psy.

9.3 ScaleJoin usecase

We continue our evaluation focusing on a specific operator with
two logical streams: ScaleJoin [12]. The performance of this parallel
operator can be hampered in existing SPEs because of the need for
broadcasting tuples to all T threads. Because of this, and since
Flink only supports parallel EquiJoin, we compare our results in
this case with those achieved by the ScaleJoin implementation.

We follow the same benchmark used in [12, 25] to join two
logical streams of R and S tuples. R tuples carry attributes (ts, x, y),
where x is type of int and y is float while S tuples carry attributes
(ts,a,b,c,d) where a, b, ¢, and d are types of int, float, double
and boolean, respectively. For each pair of tuples tg and ts, an
output tuple with schema (ts, x, y, a, b, ¢, d) is produced if:

ts.a—10 < tp.x < ts.a+ 10 and ts.b — 10 < tr.y < ts.b + 10

Attributes x, y, a and b are randomly selected from a uniform
distribution with interval [1, ..., 10000] which results on average in
an output tuple every 250000 comparisons.

Intra-epoch performance. To assess the intra-epoch performance
of STRETCH, we first check its scalability regarding the number
of T threads. Also, we show the performance of a single thread,
processing the tuples sequentially. In the single thread implemen-
tation, we use one thread per TI, TP, and TO sets. There is one
bounded buffer between the threads of T! and T¥ and one buffer
between the ones of TX and TO, to control the rate. Hence, the sin-
gle thread implementation is similar to the ScaleJoin and STRETCH
with one thread for TF, where the ScaleGates are substituted with
bounded buffers. Figure 5 shows (i) the maximum sustainable input
rate averaged over 5 different runs (and the standard deviation) for
increasing number of TF threads, (ii) the corresponding through-
put, in terms of number of comparisons and (iii) the corresponding
latency in logarithmic scale, for a time-based window of size 5 min.

As shown in the intra-epoch column of the figure, the through-
put of ScaleJoin and STRETCH with one thread for TT is similar to
the single thread but the latency for the single thread is lower than
the other two, which is the cost of using ScaleGate. However, as

H. Najdataei et al.

expected (and as discussed in detailed in [12]), by increasing the
number of TP threads, the throughput for ScaleJoin and STRETCH
grows linearly. Although hyper-threading (after 36 physical threads)
causes a degradation, by keeping increasing the number of TF
threads, both STRETCH and ScaleJoin are still capable of scaling.
The latency for the highest throughput achieved by different num-
bers of threads for T¥ shows that the STRETCH achieves latency
in the same order as that of ScaleJoin.

Inter-epoch performance. As discussed in § 3, STRETCH provides
a general API that allows any external policy to take decisions about
when to provision or decommission a certain number of threads
(based on the statistics provided by the STRETCH framework it-
self or other external information). In these experiments, similarly
as done in [10], we trigger the provisioning or decommissioning
of threads based on the processing capacity of the threads. More
concretely, we define an upper, a target and a bottom processing
capacity threshold. When the current processing load of active
threads exceeds the upper threshold, the smallest amount of new
threads needed to bring the average processing capacity below the
target threshold is provisioned. When the current processing load
of active threads is below the bottom threshold, the smallest amount
of underutilized threads needed to bring the average processing
capacity below the target threshold is decommissioned. In our ex-
periments, the upper, target and bottom thresholds are set to 90%,
70%, and 45% of the threads maximum throughput, respectively.

To evaluate the elasticity of the framework, we increase (de-
crease) the load after filling the window and add (remove) threads
while measuring the latency, throughput and reconfiguration time.
For the provisioning experiments, we start with input rate 70%
of the maximum rate that can be sustained by the corresponding
number of TP threads for time-based window with window size 5
minutes. After 6 minutes, when the window is full and the system
is stable, we increase the rate to 120% of the maximum sustainable
rate which requires provisioning of new threads for T? in order to
keep up with the input rate, and therefore trigger an epoch switch.
For the decommissioning experiments, we start with 70% of the
maximum sustainable rate and then after 6 minutes, similarly as
the previous experiment, decrease the rate to 30%. In this case, the
system needs decommissioning a few number of active T¥ threads
in order to utilize resource usages. Table 2 presents the number of
threads that need to be provisioned or decommissioned depending
on the number of T¥ threads running in the system.

Figure 5, columns labeled “provisiong" and "decommissioning”,
show the effect of increasing or decreasing the workload for Scale-
Join and STRETCH, and consecutively provisioning or decommis-
sioning threads for T? for the 18 threads in STRETCH. As shown
for the provisioning, by increasing the workload, STRETCH can
sustain higher rates when adding new threads, resulting in higher

starting |TT| 519 [18]30] 40

|TP| after Provisioning 9|16 | 31 | 52 | 69

|TP] after Decommissioning | 2 | 3 7 112 |17

Table 2: Provisioned / decommissioned threads depending
on the number of T* threads.

STRETCH: Elastic Deterministic Streaming Analysis

provisioning
Intra-epoch (18 -> 31 PTs)
— 6000 1
= 4000
@ 4000
o
S 2000 3000
o
£
1e9
— 3
Y Single thread
£ —— STRETCH
5 4 —}— ScaleJoin
Q.
ey
22 1
[
_C
3 3
10 - 10
) ! i
é : hyperthreading
2 2
> 10 10
3
E 1 : 1
10 = 10
0 20 40 60 0 250 500 750
threads time (sec)

DEBS ’19, June 24-28, 2019, Darmstadt, Germany

decommissioning inter-epoch
18 ->7 PTs m
() 2 °
= 30 - o
2500])
£ [
= () ()
2000 §20- @ decommissioning
g
1500 =]
2
= 10 -
[}
1e9 9
1.0 = [1 1 1 1
159 18 30 40 60 70
threads
0.5
Load balance
0.0 g 20- [N
8
10° 5% 15 -
cL
[T
S 10- ° [
=
10° 55
o/ 05 -
g [
10‘ 0.0~ (R 1 1 ’ 1 1
0 250 500 750 159 18 30 40 60 70
time (sec) # threads

Figure 5: The performance of STRETCH framework with ScaleJoin for Join operator using time-based window with window size 5 minutes

throughput without affecting the latency. In the decommission-
ing procedure, when decreasing the workload, not only STRETCH
achieves the same throughput as ScaleJoin, as expected, but it also
shows slightly lower latency.

Moreover, we measure the reconfiguration time, which starts
from the moment STRETCH receives a reconfiguration command
till it successfully finishes executing it. As shown at the rightmost
column in Fig. 5, the reconfiguration time is always less than 40
msec, which indicates there is no significant degradation during the
epoch switch. Furthermore, at the same column, we show the load
imbalance, in terms of coefficient of variation percentages. As it
can be observed, in most cases there is at most 1% difference, while
in all cases the difference is at most 2%.

Summary of the evaluation results

The empirical study (i) validates the model in § 8 (Fig. 4 and 3),
(ii) demonstrates very fast reconfiguration possibilities, of just a few
msec (Fig. 5 inter-epoch parts), enabled by STRETCH, while it also
(iii) shows the low-overhead induced for in achieving these (Fig. 5
intra-epoch column), while preserving determinism in STRETCH.

10 RELATEDWORK

Several scalable and elastic parallel approaches have been discussed
in the literature, e.g. [10, 22, 24]. For a systematic review, we refer
the reader to [14]. This work does not focus on a particular strategy
or a specific operator, but rather provides a general framework
with the goal of promoting virtual shared-nothing parallelism (also
showing it can embrace existing parallelism schemes), which, to the
best of our knowledge, has not been studied before. The following
is a summary of the state of the art in elasticity for intra-operator
parallelization, including relation to our results. We organize the dis-
cussion in terms of key goals and properties, i.e. number of threads

that can change per reconfiguration, the roles of state transfer and
of the triggering mechanism, the focus on determinism and the
reaction time vs overhead of frequent reconfigurations.

Regarding changes in number of threads, the literature provides
methods for provisioning and decommissioning one thread at a time
(e.g., [26], [19]) or more threads (e.g., [17]), as in our case. Differently
from us, nonetheless, [17] does not actively target determinism.

Regarding state-transfers, one issue, orthogonal to our work, is
related to load balancing, a combinatorial problem, related to pack-
ing (cf. [3, 10, 16, 17] and references therein). Another issue is that
of the cost of transferring, since the overheads of state serialization
and deserialization can degrade the SPE’s performance. This can
be alleviated by techniques aiming at reducing latency spikes, such
as the ones in [15], or at recreating small states at the downstream
thread by sending to the latter previously sent tuples (rather than
transferring the upstream’s thread’s state), or by distributing the
work to nodes through hashing, in ways that minimize the changes
when rehashing [8]. Our work enables possibilities for efficiency
due to sharing and advances the front of scaling-up by not requiring
any state transfer, thus making these issues orthogonal and existing
methods complementary to ours.

Targeting determinism needs appropriate synchronization. De-
terminism has been formalized in the context of parallel SPEs and
in the context of algorithms for parallel data streaming operators,
for instance by [11, 12] and is also referred to as safety by [18] and
semantic transparency by [10]. Here we show sufficient conditions
for determinism, also under reconfigurations.

Another key issue is when to trigger reconfigurations, as it is
related to trade-offs between overheads and time to react when
reconfigurations are needed. In the literature there exist proactive
and reactive approaches, load-based approaches and application-
performance- related approaches (cf. [6, 10, 19, 21, 23, 32] and ref-
erences therein). Various triggering mechanisms can be combined

DEBS ’19, June 24-28, 2019, Darmstadt, Germany

with STRETCH. As discussed by [6] with respect to SASO proper-
ties (i.e., Stability, Accuracy, Settling time and Overshoot), elasticity
mechanics build on top of contrasting objectives. In addressing this
issue, the work presented here implies better margins, due to the ex-
tra efficient reconfiguration proposed when scaling-up is the target.

11 CONCLUSIONS AND FUTURE WORK

We presented STRETCH, a framework that provides virtual shared-
nothing parallelism and supports determinism while easing the
programming of scalable, elastic, high-throughput and low-latency
stateful streaming analysis. The ease of use is not only because
STRETCH does not require coding of state transfer protocols but
also due to the specified set of conditions that, once fulfilled, we
have shown they imply deterministic execution. STRETCH builds
on several results of the recent years for efficient intra-node stream
processing and fuses them in a holistic framework, able to embrace
many parallelization strategies. We provide empirical evidence that
STRETCH’s virtual shared-nothing parallelism performs as modeled
offering improvements over pure shared-nothing parallelism. We
also show that STRETCH outperforms state-of-the-art tools such
as ScaleJoin and components in SPEs such as Flink, also providing
fast reconfigurations, in the realm of few msec.

Future directions include the study of possibilities to combine
STRETCH’s intra-node elastic approach with complementary inter-
node elasticity, focusing on joint schemes for homogeneous dis-
tributed cloud-based systems, or heterogeneous fog-based ones.

ACKNOWLEDGMENTS

We thank our shepherd, Paris Carbone, and the anonymous review-
ers for their constructive comments and suggestions. The work was
supported by the SSF proj. “FiC” nr. GMT14-0032, by the Chalmers
Energy AoA framework proj. INDEED and STAMINA and by the
Swedish Research Council proj. “HARE” nr. 2016-03800.

REFERENCES

[1] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak, Rafael J

Fernandez-Moctezuma, Reuven Lax, Sam McVeety, Daniel Mills, Frances Perry,

Eric Schmidt, and Sam Wittle. 2015. The dataflow model: a practical approach

to balancing correctness, latency, and cost in massive-scale, unbounded, out-of-

order data processing. Proc. Endowment 8, 12 (2015), 1792-1803.

Magdalena Balazinska, Hari Balakrishnan, Samuel R Madden, and Michael Stone-

braker. 2008. Fault-tolerance in the Borealis distributed stream processing system.

ACM Trans. on Database Systems (TODS) 33, 1 (2008), 3.

[3] Cagri Balkesen, Nesime Tatbul, and M Tamer Ozsu. 2013. Adaptive input admis-
sion and management for parallel stream processing. In Proc. of the 7th ACM Int’l
Conf. on Distributed event-based systems. ACM, 15-26.

[4] Paris Carbone, Stephan Ewen, Gyula Fora, Seif Haridi, Stefan Richter, and Kostas
Tzoumas. 2017. State management in Apache Flink®: consistent stateful dis-
tributed stream processing. Proc. VLDB Endowment 10, 12 (2017), 1718-1729.

[5] Valeria Cardellini, Matteo Nardelli, and Dario Luzi. 2016. Elastic stateful stream
processing in storm. In High Performance Computing & Simulation (HPCS), 2016
Int’l Conf. on. IEEE, 583-590.

[6] Tiziano De Matteis and Gabriele Mencagli. 2017. Proactive elasticity and energy
awareness in data stream processing. Journal of Systems and Software 127 (2017),
302-319.

[7] flink [n. d.]. Apache Flink. https://flink.apache.org. ([n. d.]). Accessed:2019-3-1.

[8] Bugra Gedik. 2014. Partitioning Functions for Stateful Data Parallelism in Stream
Processing. The VLDB Journal 23, 4 (Aug. 2014), 517-539. https://doi.org/10.
1007/500778-013-0335-9

[9] Bugra Gedik, Rajesh R Bordawekar, and S Yu Philip. 2009. CellJoin: a parallel

stream join operator for the cell processor. The VLDB journal (2009).

Vincenzo Gulisano. 2012. StreamCloud: An Elastic Parallel-Distributed Stream

Processing Engine. Ph.D. Dissertation. Universidad Politécnica de Madrid.

[2

=

=
=2

H. Najdataei et al.

[11] Vincenzo Gulisano, Yiannis Nikolakopoulos, Daniel Cederman, Marina Papatri-
antafilou, and Philippas Tsigas. 2017. Efficient Data Streaming Multiway Ag-
gregation Through Concurrent Algorithmic Designs and New Abstract Data

Types. ACM Trans. Parallel Comput. 4, 2, Article 11 (Oct. 2017), 28 pages.

https://doi.org/10.1145/3131272

Vincenzo Gulisano, Yiannis Nikolakopoulos, Marina Papatriantafilou, and Philip-

pas Tsigas. 2016. ScaleJoin: a Deterministic, Disjoint-Parallel and Skew-Resilient

Stream Join. IEEE Trans. Big Data PP, 99 (2016), 1-1. https://doi.org/10.1109/

TBDATA.2016.2624274

Vincenzo Gulisano, Yiannis Nikolakopoulos, Ivan Walulya, Marina Papatri-

antafilou, and Philippas Tsigas. 2015. Deterministic Real-time Analytics of

Geospatial Data Streams Through ScaleGate Objects. In Proceedings of the 9th

ACM International Conference on Distributed Event-Based Systems (DEBS ’15).

ACM, New York, NY, USA, 316-317. https://doi.org/10.1145/2675743.2776758

Vincenzo Gulisano, Marina Papatriantafilou, and Alessandro Vittorio Papadopou-

los. 2018. Elasticity. In Encyclopedia of Big Data Technologies, Sherif Sakr and

Albert Y. Zomaya (Eds.). Springer Int’] Conf. Publishing, Cham, 1-7. https:

//doi.org/10.1007/978-3-319-63962-8_191-1

Thomas Heinze, Zbigniew Jerzak, Gregor Hackenbroich, and Christof Fetzer.

2014. Latency-aware Elastic Scaling for Distributed Data Stream Processing

Systems. In Proceedings of the 8th ACM International Conference on Distributed

Event-Based Systems (DEBS ’14). ACM, New York, NY, USA, 13-22. https://doi.

org/10.1145/2611286.2611294

[16] Thomas Heinze, Yuanzhen Ji, Yinying Pan, Franz Josef Grueneberger, Zbigniew

Jerzak, and Christof Fetzer. 2013. Elastic Complex Event Processing under Varying

Query Load.. In BD3@ VLDB. 25-30.

Thomas Heinze, Valerio Pappalardo, Zbigniew Jerzak, and Christof Fetzer. 2014.

Auto-scaling techniques for elastic data stream processing. In Data Engineering

Workshops (ICDEW), 2014 IEEE 30th Int’l Conf. on. IEEE, 296-302.

[18] Martin Hirzel, Robert Soulé, Scott Schneider, Bugra Gedik, and Robert Grimm.
2014. A Catalog of Stream Processing Optimizations. ACM Comput. Surv. 46, 4,
Article 46 (March 2014), 34 pages. https://doi.org/10.1145/2528412

[19] C.Hochreiner, M. Végler, S. Schulte, and S. Dustdar. 2016. Elastic Stream Pro-
cessing for the Internet of Things. In 2016 IEEE 9th International Conference on
Cloud Computing (CLOUD). 100-107. https://doi.org/10.1109/CLOUD.2016.0023

[20] Yuanzhen Ji, Hongjin Zhou, Zbigniew Jerzak, Anisoara Nica, Gregor Hacken-
broich, and Christof Fetzer. 2015. Quality-Driven Continuous Query Execution
over Out-of-Order Data Streams. In Proc. of the 2015 ACM SIGMOD Int’l Conf. on
Management of Data. ACM, 889-894.

[21] A. G. Kumbhare, Y. Simmhan, M. Frincu, and V. K. Prasanna. 2015. Reactive

Resource Provisioning Heuristics for Dynamic Dataflows on Cloud Infrastructure.

IEEE Transactions on Cloud Computing 3, 2 (April 2015), 105-118. https://doi.org/

10.1109/TCC.2015.2394316

Luo Mai, Kai Zeng, Rahul Potharaju, Le Xu, Steve Suh, Shivaram Venkataraman,

Paolo Costa, Terry Kim, Saravanan Muthukrishnan, Vamsi Kuppa, et al. 2018.

Chi: a scalable and programmable control plane for distributed stream processing

systems. Proc. VLDB Endowment 11, 10 (2018), 1303-1316.

[23] André Martin, Andrey Brito, and Christof Fetzer. 2014. Scalable and elastic
realtime click stream analysis using streammine3g. In Proc. of the 8th ACM Int’l
Conf. on Distributed Event-Based Systems. ACM, 198-205.

[24] Ruben Mayer, Boris Koldehofe, and Kurt Rothermel. 2015. Predictable low-latency

event detection with parallel complex event processing. IEEE Internet of Things

Journal 2, 4 (2015), 274-286. https://doi.org/10.1109/JI0T.2015.2397316

Pratanu Roy, Jens Teubner, and Rainer Gemulla. 2014. Low-Latency Handshake

Join. Proc. VLDB Endowment (2014).

[26] S.Schneider, H. Andrade, B. Gedik, A. Biem, and K. Wu. 2009. Elastic scaling of
data parallel operators in stream processing. In 2009 IEEE International Sympo-
sium on Parallel Distributed Processing. 1-12. https://doi.org/10.1109/IPDPS.2009.
5161036

[27] spark [n. d.]. Apache Spark. https://spark.apache.org. ([n. d.]). Accessed:2019-3-1.

[28] storm [n. d.]. Apache Storm. http://storm.apache.org. ([n. d.]). Accessed:2019-3-1.

[29] Jens Teubner and Rene Mueller. 2011. How soccer players would do stream joins.
In Proc. of the 2011 ACM SIGMOD Int’l Conf. on Management of data.

[30] Ivan Walulya, Dimitris Palyvos-Giannas, Yiannis Nikolakopoulos, Vincenzo
Gulisano, Marina Papatriantafilou, and Philippas Tsigas. 2018. Viper: A mod-
ule for communication-layer determinism and scaling in low-latency stream
processing. Future Generation Computer Systems 88 (2018), 297-308.

[31] Nikos Zacheilas, Vana Kalogeraki, Yiannis Nikolakopoulos, Vincenzo Gulisano,
Marina Papatriantafilou, and Philippas Tsigas. 2017. Maximizing Determinism in
Stream Processing Under Latency Constraints. In Proceedings of the 11th ACM
Int’l Conf. on Distributed and Event-based Systems (DEBS ’17). ACM, 112-123.
https://doi.org/10.1145/3093742.3093921

[32] N. Zacheilas, V. Kalogeraki, N. Zygouras, N. Panagiotou, and D. Gunopulos. 2015.
Elastic complex event processing exploiting prediction. In 2015 IEEE International
Conference on Big Data (Big Data). 213-222. https://doi.org/10.1109/BigData.2015.
7363758

[12

[13

[14

[15

[17

[22

&
2

https://flink.apache.org
https://doi.org/10.1007/s00778-013-0335-9
https://doi.org/10.1007/s00778-013-0335-9
https://doi.org/10.1145/3131272
https://doi.org/10.1109/TBDATA.2016.2624274
https://doi.org/10.1109/TBDATA.2016.2624274
https://doi.org/10.1145/2675743.2776758
https://doi.org/10.1007/978-3-319-63962-8_191-1
https://doi.org/10.1007/978-3-319-63962-8_191-1
https://doi.org/10.1145/2611286.2611294
https://doi.org/10.1145/2611286.2611294
https://doi.org/10.1145/2528412
https://doi.org/10.1109/CLOUD.2016.0023
https://doi.org/10.1109/TCC.2015.2394316
https://doi.org/10.1109/TCC.2015.2394316
https://doi.org/10.1109/JIOT.2015.2397316
https://doi.org/10.1109/IPDPS.2009.5161036
https://doi.org/10.1109/IPDPS.2009.5161036
https://spark.apache.org
http://storm.apache.org
https://doi.org/10.1145/3093742.3093921
https://doi.org/10.1109/BigData.2015.7363758
https://doi.org/10.1109/BigData.2015.7363758

	Abstract
	1 introduction
	2 Preliminaries
	3 Problem Modeling and Objectives
	4 Overview of STRETCH
	4.1 The Elastic ScaleGate (ESG) data object
	4.2 The STRETCH framework's architecture
	4.3 Example: STRETCH-implemented Join

	5 Intra-epoch processing
	5.1 Enforcing properties P1-P3 in E0

	6 Inter-epoch Processing
	6.1 Switching epochs
	6.2 Satisfying properties P4-P6 from Ei to Ei+1
	6.3 Satisfying properties P1-P3 in Ei, i > 0

	7 Algorithmic implementation of ESG
	8 Modelling STRETCH's performance
	9 evaluation
	9.1 VSN vs PSN scalability - synthetic dataset
	9.2 VSN vs PSN scalability - Twitter dataset
	9.3 ScaleJoin usecase

	10 relatedwork
	11 Conclusions and future work
	Acknowledgments
	References

