
STRETCH: Scalable and Elastic Deterministic
Streaming Analysis with Virtual Shared-Nothing Parallelism

Hannaneh Najdataei, Yiannis Nikolakopoulos

Marina Papatriantafilou, Philippas Tsigas, Vincenzo Gulisano

Chalmers University of Technology

{hannajd,ioaniko,ptrianta,tsigas,vinmas}@chalmers.se

ABSTRACT
Despite the established scientific knowledge on efficient parallel

and elastic data stream processing, it is challenging to combine

generality and high level of abstraction (targeting ease of use) with

fine-grained processing aspects (targeting efficiency) in stream pro-

cessing frameworks. Towards this goal, we propose STRETCH, a
framework that aims at guaranteeing (i) high efficiency in through-

put and latency of stateful analysis and (ii) fast elastic reconfigu-

rations (without requiring state transfer) for intra-node streaming

applications. To achieve these, we introduce virtual shared-nothing
parallelization and propose a scheme to implement it in STRETCH,
enabling users to leverage parallelization techniques while also

taking advantage of shared-memory synchronization, which has

been proven to boost the scaling-up of streaming applications while

supporting determinism. We provide a fully-implemented proto-

type and, together with a thorough evaluation, correctness proofs

for its underlying claims supporting determinism and a model (also

validated empirically) of virtual shared-nothing and pure shared-

nothing scalability behavior. As we show, STRETCH can match

the throughput and latency figures of the front of state-of-the-art

solutions, while also achieving fast elastic reconfigurations (taking

only a few milliseconds).

CCS CONCEPTS
• Information systems→ Streammanagement;Data streams;
Online analytical processing engines;

KEYWORDS
Data streaming, Shared-nothing parallelism, Elasticity, Scalability

ACM Reference Format:
HannanehNajdataei, Yiannis NikolakopoulosMarina Papatriantafilou, Philip-

pas Tsigas, Vincenzo Gulisano. 2019. STRETCH: Scalable and Elastic Deter-

ministic Streaming Analysis with Virtual Shared-Nothing Parallelism. In

DEBS ’19: The 13th ACM International Conference on Distributed and Event-
based Systems (DEBS ’19), June 24–28, 2019, Darmstadt, Germany. ACM, New

York, NY, USA, 12 pages. https://doi.org/10.1145/3328905.3329509

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

DEBS ’19, June 24–28, 2019, Darmstadt, Germany
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6794-3/19/06. . . $15.00

https://doi.org/10.1145/3328905.3329509

1 INTRODUCTION
Data streaming builds on efficient one-pass analysis of unbounded

streams of tuples. It is widely adopted thanks to two decades of re-

search results and thanks to open-source Stream Processing Engines

(SPEs) [7, 10, 27, 28]. When such analysis is stateful, its resulting
output tuples can depend on arbitrarily-long portions of the input.

In the literature, many solutions study how to deploy state-

ful analysis and efficiently leverage multi-core architectures by

means of parallelism and elasticity (i.e., by multi-threaded execu-

tions in which resources as threads are adjusted over time) [4, 5, 9–

12, 25, 29]. Such techniques focus on optimizing the parallelization

of specific operators [9, 11, 12, 25, 29], managing the distributed

state of parallel operators [4, 5], providing operator-oblivious par-

allelization and elasticity [5, 10] or guaranteeing deterministic exe-

cution [8, 12, 30], among other aspects.

Challenges. Existing SPEs provide good support for paralleliza-

tion and elasticity of simple stateful analysis (e.g., continuous per-

key summation), but leave to users how to use their APIs efficiently

when programming complex stateful analysis. Consider, as a mo-

tivating example, a user trying to parallelize the analysis of an

application that tries to find, on a per-hashtag basis, how many

times an ordered sequence of words is found within or across con-

secutive tweets. Intuitively, the user could parallelize the application

by assigning the analysis of tweets carrying different hashtags to

distinct threads. Key-by partitioning, provided by Apache Flink [7]

(or simply Flink) and Apache Storm [28], could not be directly lever-

aged, though, for tweets carrying two or more hashtags assigned to

different threads. Users would need to either create single-hashtag

copies of tweets if the latter carry multiple hashtags (and then use

key-by partitioning) or define a custom tuple-to-thread assignment

scheme. In both cases, data duplication would unnecessarily ham-

per performance if the threads share memory and could instead

access the same copy of each tweet. To complicate the matter fur-

ther, if the SPEs arbitrarily interleave tuples forwarded to a parallel

thread from multiple streams, the user would also need to program

how to deterministically merge such streams (e.g., sort them on a

per-tuple basis [12] or with watermarks [1]), in order to prevent

the arbitrary interleaving from affecting whether the ordered se-

quence of words is found or not. Finally, the user might also need

to program how to serialize/deserialize the state of the analysis run

in parallel for the SPE to trigger reconfigurations (e.g., provisioning

or decommissioning of threads).

Addressing efficiently these connected challenges, that hold also

for other stateful streaming operators such as joins, is not trivial

for the average programmer. With our work, we aim at advancing

the front of SPEs’ automation and tools available to end users.

https://doi.org/10.1145/3328905.3329509
https://doi.org/10.1145/3328905.3329509


DEBS ’19, June 24–28, 2019, Darmstadt, Germany H. Najdataei et al.

Contributions. These challenges have conflicting needs wrt "right
amount of sharing" to (i) enhance independence among threads,

as well as to (ii) enable efficient coordination for consistent re-

distribution of work when needed, while (iii) supporting determin-

ism. The implied trade-offs relate to the efficiency in synchroniza-

tion and state sharing among threads: on one hand, shared-nothing

processing maximizes parallelism, but is costly in reconfigurations

and in making copies of the data when needed; on the other hand,

sharing processing state might introduce contention in maintaining

parallelism, but facilitates the workload shifting among threads by

not needing state transfer protocols. Based on this, our motivat-
ing research question is: Can an intra-node streaming framework
take the best of two worlds, shared-nothing and shared-memory par-
allelism, (i) allowing users to program parallel and elastic stateful
operators, (ii) without partitioning but rather sharing input tuples
with all threads and specify which ones the latter should process or
ignore, while (iii) supporting deterministic execution and (iv) ensuring
high efficiency in terms of throughput, latency and reconfiguration
times?

We propose virtual shared-nothing parallelisation and provide

a framework leveraging it. The framework, called STRETCH, man-

ages efficient processing for interconnected streaming operators,

supporting determinism even with varying degree of parallelism.

In more detail, the contributions include (i) a generalization of

previous results (e.g., [12, 13]) in supporting efficient sharing and

synchronization among parallel threads, building on ScaleGate, an

established object for communication among operators in SPEs,

which has been shown to facilitate efficient deterministic fine-

grained stream processing; (ii) a novel, virtual shared-nothing state

manager that provides to each thread exclusive access to a por-

tion of an operator state while also allowing to efficiently change

ownership of such portions at runtime for elastic reconfigurations;

(iii) an extended API for ScaleGate, which we call ESG (elastic Scale-

Gate) and the algorithmic implementation for it, to allow dynamic

number of threads accessing it, as well as a protocol describing

the interactions between ScaleGate objects and the state manager

for load balancing, thread provisioning and thread decommission-

ing; (iv) correctness proofs for the determinism guarantees of the

methods and a model for the performance of virtual shared-nothing

parallelism; and (v) an extensive evaluation, empirically validating

our model, as well as showing that with the proposed methods,

fast work redistribution is possible, with minimal overhead both in

latency and throughput.

The paper is organized as follows: § 2 introduces preliminary

concepts, § 3 presents our system model and objectives. We outline

STRETCH in § 4 and provide algorithmic implementation details

and correctness arguments in § 5, § 6 and § 7.Wemodel the behavior

of virtual shared-nothing parallelism comparing it also with shared-

nothing parallelism in § 8 and evaluate the model and STRETCH in

§ 9. We discuss related work in § 10 and conclude in § 11.

2 PRELIMINARIES
Data streaming. A data streaming continuous query (or simply

query in the remainder) is a directed acyclic graph (DAG) of streams
(carrying information) and operators (manipulating such informa-

tion). A stream is an unbounded sequence of tuples sharing the

same schema composed by attributes ⟨ts,A1, . . . ,An⟩. Attribute
t .ts represents the (event) time at which the tuple has been created.

An operator is the minimum processing unit that defines at least

one input stream (delivering the tuples to be processed) and one

output stream (to forward the output tuples it produces).

Tuples sharing the same schema and being input to the same

operator can come from multiple sources or operators. Hence we

distinguish between physical and logical streams. The former rep-

resents one stream between a pair of operators while the second

represents the set of streams defining the same schema and carrying

the same type of information to the same operator. Following a com-

mon assumption in the streaming literature (e.g., [2, 10–12]), we

assume that each physical stream contains timestamp-sorted tuples.

If this is not the case, sorting tools such as [20] can be leveraged.

We use the term stream without specifying whether it is logical or

physical if it can be deduced by the context.

Streaming operators are distinguished into stateless and stateful.
Such a stateful operator, which we also use later in the paper, is

the Join [12]: it defines a left (L) and a right input stream (R) and
produces output tuples combining the attributes of tuples tL ∈

L and tR ∈ R, for each pair of tuples ⟨tL , tR ⟩ satisfying a given

predicate and being closer in time than a given window size WS

(i.e., |tL .ts − tR .ts | ≤ WS). We assume that the timestamp of an

output tuple to produced by a stateful operator is equal to that of

the latest processed tuple that triggers the output of to (additional

timestamps related to the tuples contributing to to can be other

attributes of to ’s schema).

Determinism. Deterministic execution of a sequential operator
requires that each processing step depends on the notion of event

time carried by the tuples themselves (attribute ts) and is affected

neither by the latency incurred in transmitting tuples from an op-

erator to another operator nor by the interleaving of tuples to an

operator with multiple input streams. For a parallel operator, deter-
minism is enforced when its results (for the same sequence of input

tuples) are equivalent to those of its sequential counterpart [10–12].

As explained in [11, 12], a sufficient condition for determinism for

both cases is to require merging the timestamp-sorted physical

streams delivering tuples to a stream and processing such tuples in

timestamp-order once they are ready, as defined in [11]: t
j
i , being

the i-th tuple from timestamp-sorted stream j, is ready to be pro-

cessed when t
j
i .ts ≤ merдets , wheremerдets =min

k
{max

l
(tk
l
.ts)}

is the minimum among the latest l tuple timestamps, one from each

timestamp-sorted streamk . ScaleGate [11, 12] is a shared data object,
leveraged and extended in this work, that (i) efficiently supports

concurrent deterministic merging of timestamp-sorted streams into

a timestamp-sorted stream of ready tuples, while (ii) allowing a

number of reader entities to consume all the ready tuples of the

latter stream. Its lock-free algorithmic implementation was shown

to facilitate efficient deterministic processing [11, 12, 30, 31].

Load Balancing and Elasticity. As discussed in [10], the computa-

tional cost of a streaming application varies over time, depending

on the rate with which input tuples are fed to it and depending on

the tuples’ data distribution. Because of this, a parallel execution

in which the distribution of work to threads is statically decided at

deploy time can lead to imbalances in the work of threads. When



STRETCH: Elastic Deterministic Streaming Analysis DEBS ’19, June 24–28, 2019, Darmstadt, Germany

the overall work is unbalanced but could be carried out by the avail-

able threads as a whole, a load balancing adaptive reconfiguration

is needed to change the work distribution. If more threads are to

be provisioned, the new work distribution should also assign some

work to the newly allocated threads. Notice that it is essential to ad-

just resources such as threads, since over-provisioned systems can

lead to high latency [30] or unnecessary costs [10]. Because of this,

elastic reconfigurations should also be triggered when the work can

be done by fewer threads (independently of whether they are imbal-

anced), thus decommissioning some threads and changing the work

distribution. We use the term reconfiguration to refer to any of these.

3 PROBLEM MODELING AND OBJECTIVES
State, buckets and streaming parallelization model. We target a

general-purpose intra-node streaming tool, where users can imple-

ment parallel stateful analysis, without explicit handling of com-

plexities inherent to determinism or fast reconfigurations. We adopt

a known parallelismmodel of the literature [7, 8, 10, 28], that allows

users to define and maintain the state of a streaming operator over a

set of buckets. Each bucket, a fine-grained portion of the operator’s

state, can be accessed and updated (based on the tuples being pro-

cessed) by one of the threads that run instances of the operator. The
number of buckets of an operator is commonly chosen to be greater

than that of the maximum threads that can be in charge of running

its instances. The portion of state assigned to each thread is thus

a partition of the operator’s buckets. In the following,M refers to

a buckets-to-threads mapping function, where M[k] denotes the
thread id to which bucket k is assigned to.

In relation to the twitter example (§ 1), the state of an operator

running such analysis could consist of per-hashtag indexes (of the

next word to find) and counters (of sequences matched so far). To

maintain such state, the user could assign each hashtag to exactly

one bucket (e.g., using a hash-function) and parallelize the analysis

by letting each parallel thread update the indexes and counters of

hashtags contained in the buckets assigned to it.

Notice that the state of an operator can depend on all the tuples

observed so far, or on a window of them, as in the case of stream

Joins (§ 2). In this sense, the problem does not impose any restriction

on the length of such portion. As discussed in § 1, we aim at a

parallelization approach in which users do not need to partition

input tuples to threads (as in key-by partitioning). In turn, this does

not limit the problem to a type of parallelism in which each parallel

thread runs the same analysis on different portions of input data.

The stream join we use as one example (§ 4.3) presents such a case,

in which all parallel threads carry out some of the processing for

all input tuples.

Execution epochs. Under the assumption that all threads are fed

with the same sequence of tuples, a reconfiguration implies a change

in M to hold true from a certain tuple onward. We use the term

epoch to refer to the period spanning tuples in between two event

times (i.e. between timestamps of a pair of tuples), during which

the mapping of buckets to threads does not change. Hence, being

Ei the current epoch, T
P
i the set of processing threads and Mi the

mapping in Ei , a reconfiguration implies the beginning of a new

epoch Ei+1 for which a new mappingMi+1 is used for a (possibly

different) set of processing threads T P
i+1.

Problem statement. Our goal is a framework that can facilitate the

programming of stateful analysis when efficient parallelism cannot

be simply achieved by partitioning input tuples to threads (e.g., as

in key-by partitioning). From an SPE perspective, and with the goal

of combining the benefits of shared-nothing and shared-memory

approaches, we aim at designing and implementing a framework

for intra-node parallel and reconfigurable stateful analysis with the

following objectives:

O1 A programmable interface that does not require thread-safe

programming of stateful analysis (i.e., as in shared-nothing

parallelism), thus granting exclusive read and write access to

a portion of the operator’s state (i.e., a portion of the buckets

maintaining it) to each parallel processing thread.

O2 Support for deterministic sharing of all input tuples to all pro-

cessing threads in the same order (without requiring the user to

define any input tuple partitioning scheme) and deterministic

merging for all threads fed by multiple streams.

O3 Support for fast reconfigurations.

We do not place restrictions on the logic with which reconfig-

uration actions are taken. Instead, we assume the existence of an

external orthogonal policy in charge of triggering the reconfigu-

rations. One such policy, triggering reconfigurations based on the

threads’ CPU consumption is used in our evaluation (§ 9).

Notice that, in contrast to objective O3, which can be only evalu-

ated empirically, O1 and O2 can be met if a set of sufficient properties
is satisfied [10–12, 30], distinguished into intra-epoch and inter-
epoch ones (i.e. to hold within each epoch, respectively when transi-

tioning from Ei to Ei+1). Intra-epoch properties to be enforced are:

P1 All threads observe all input tuples in the same order.

P2 For a given mappingMi , each thread has exclusive read/write

access to the bucket(s) mapped to it.

P3 The tuples received by any thread from multiple streams are

merged into a sequence of tuples processed by the thread once

ready.

Additional, inter-epoch properties to be enforced are:

P4 If a bucket is mapped to a processing thread p1 in epoch Ei
(i.e., if such a bucket is potentially modified based on the tuples

processed by p1) and to processing thread p2 in epoch Ei+1,
then the first tuple belonging to Ei+1 is processed by p2 after
the last tuple belonging to Ei is processed by p1.

P5 Each reconfiguration takes place atomically (either by being

applied in its entirety or not being applied).

P6 Tuples sharing the same timestamp belong to exactly one epoch.

4 OVERVIEW OF STRETCH
Figure 1 outlines STRETCH ’s overall architecture, utilising as main

components the State Manager (SM) and Elastic ScaleGate (ESG)
objects. For ease of presentation of the STRETCH ’ and SM’s archi-

tecture and functionality, before outlining them in § 4.2, we outline

the ESG’s API and functionality in § 4.1. In § 4.3, we provide an

example implementation for a join operator, which we also use in

the experimental evaluation.



DEBS ’19, June 24–28, 2019, Darmstadt, Germany H. Najdataei et al.

ESGin

... Input threads, each delivering a stream of timestamp-sorted 
input tuples

Timestamp-sorted, ready input tuples

Stream of timestamp-sorted output tuples produced by 
each processing thread

Timestamp-sorted, ready output tuples

Merge the timestamp-sorted  input streams into one 
timestamp-sorted physical stream of ready input tuples

Merge the timestamp-sorted output streams of each 
processing thread  into one timestamp-sorted physical 
stream of ready output tuples

...

Output threads, consuming the timestamp-sorted ready 
output tuples

ESGout

...

SM Maintain buckets, providing the processing 
threads virtual shared-nothing parallelism

Retrieve buckets (based on M)

Figure 1: Overview of STRETCH.

4.1 The Elastic ScaleGate (ESG) data object
As mentioned in § 2, the Elastic ScaleGate, ESG , extends ScaleGate,
which allows (i) a number of source threads to each insert in it

a timestamp-sorted stream of tuples, and (ii) a number of reader
threads to retrieve ready tuples from it in timestamp order, through

the methods addTuple and getNextReadyTuple, respectively. They
both encapsulate the necessary communication between sources
and readers, to know whether a tuple is ready or not.

• addTuple(tuple,sID): allows a tuple from source sID to be merged

by ScaleGate in the resulting timestamp-sorted stream of tuples.

• getNextReadyTuple(rID): provides to the calling reader rID the

next earliest ready tuple that has not been yet consumed by rID.
Note that each tuple, once it becomes ready, will be returned to

all readers invoking the method.

For ESG , the API extension to enable changes in the sets of threads

is listed below, outlining the additional methods and their behaviour,

while their algorithmic implementation is described in § 7.

• announceReaders(List reader_IDs, rID): can be invoked by an

existing ESG reader rID. The new readers can return ready tuples

starting from the one that rID returned before calling this method.

• removeReaders(List reader_IDs): removes the denoted list of

readers from ESG.
• announceSources(List source_IDs, min_ts): adds new source

threads. To comply with the requirements for the identification of

ready tuples, the method expects min_ts, the earliest timestamp

the new sources can add, to be greater than the timestamp of the

latest tuple retrieved by any reader when the method is invoked.

• removeSources(List source_IDs): removes from ESG the list of

sources source_IDs. Any potential new tuple insertions by the

latter will be ignored.

For all the above, among concurrent invocations and subsequent

invocations with the same parameters, only one succeeds.

4.2 The STRETCH framework’s architecture
Recalling from Figure 1, STRETCH uses a State Manager (SM) and

two ESG objects, i.e. one for input tuples (ESGin ) and one for output

tuples (ESGout ). Several threads interact with these components:

input threads deliver input tuples to ESGin , processing threads pro-
cess input tuples and interact with SM , delivering results to ESGout ,

while output threads retrieve the output tuples delivered to ESGout .

Despite not discussed for simplicity, STRETCH also defines a thread

pool for provisioning and decommissioning. For ease of explanation,

we focus our description on the parallel, elastic and deterministic

execution of one stateful operator. The description extends for mul-

tiple operators, considering that the input (resp. output) threads

of an operator are the processing threads of its upstream (resp.

downsteam) peers.

To instantiate an operator, the STRETCH user initially provides:

{M0,T
I
0
,T P

0
,TO

0
,BucketImpl, filter}

M0 defines the overall number of buckets and their initial mapping

to the processing threads of epoch E0, whileT
I
0
,T P

0
andTO

0
are the

sets of input, processing and output threads for epoch E0, respec-
tively

1
. At runtime, each bucket is an instance of the BucketImpl

class, defined by the user to implement the stateful analysis’ logic.

The class BucketImpl is expected to define a method process (to
be invoked by T P

0
). The filter function, for each thread p and each

tuple t the thread works on, aims at filtering out the buckets of p
that need not be updated due to t . Shortly in this section we outline

how filter can be used to speed-up the analysis. Once a stateful

operator is instantiated, STRETCH defines the method:

switchEpoch(M)

which will change the mapping of buckets to threads (and the

number of threads, if the reconfiguration is provisioning or de-

commissioning them). STRETCH relies on special tuples, named

epoch-switch tuples to perform an epoch switch.

Each bucket is assigned to exactly one thread based on M . T I

(Alg. 1) are the source entities for ESGin , T
P
(Alg. 2) are the reader

and the source entities for ESGin and ESGout , respectively, andT
O

(Alg. 3) are the reader entities of ESGout .

Algorithm 1: Input threads (T I
) - main loop

1 while executing do
2 retrieve / produce next tuple t
3 add t to ESGin

T I
threads deliver each tuple (e.g., retrieved from the network

or another operator) to ESGin (Alg. 1, L 1-3). At the same time,

each T P
thread p retrieves each next ready tuple t (Alg. 2, L 2) and

checks whether t is an epoch-switch tuple or a regular one (Alg. 2,

L 3). In the former case, p stores t to later trigger a reconfiguration

(Alg. 2, L 4), at an appropriate time-point, to ensure determinism.

In the latter case, the norm is to invoke process if needed; however,
p first checks if t signifies the appropriate time-point to trigger

reconfiguration, i.e., it checks whether there exists some previously

stored epoch-switch tuple yet to be processed and if t ’s timestamp

is greater than (i.e. not equal) that of the previous regular tuple

(prev_ts). If so, p requests a new epoch, synchronizing with both

ESGs and the SM (we provide details on synchronization in § 6) and

retrieves the buckets mapped to it in such new epoch (Alg. 2, L 8- 10).

1
We will skip index i forT I

,T P
,TO

,M in contexts not focusing on a specific epoch.



STRETCH: Elastic Deterministic Streaming Analysis DEBS ’19, June 24–28, 2019, Darmstadt, Germany

Algorithm 2: Processing threads (T P
) - main loop

1 while executing do
2 retrieve t from ESGin

3 if t is an epoch-switch tuple then
4 store t in list pendingEpochSwitchTuples

5 else
6 if t is the first regular tuple ever processed then
7 get buckets assigned to this thread

8 else if pendingEpochSwitchTuples is non-empty and
t .ts > prev_ts then

9 trigger the epoch switching protocol (Alg 7)

10 get buckets assigned to this thread in new epoch

11 for BucketImpl b returned by filter(buckets,t) do
12 Tuple[] outs = b.process(t)

13 add outs to ESGout

14 prev_ts = t .ts

Algorithm 3: Output threads (TO ) - main loop

1 while executing do
2 retrieve next tuple t from ESGout

3 process / forward t

Eventually, p proceeds traversing the buckets returned by the filter
function, invoking the process function on them and delivering any

output tuple to ESGout (Alg. 2, L 11- 13). In parallel, TO retrieve

and process (or forward) from ESGout the tuples delivered by the

T P
threads (Alg. 3, L 1-3).

The role of function filter: To provide a hint about its usefulness,

consider the analysis example in § 1 and one processing thread p.
On one hand, not all tuples need to be processed by p, only the

ones carrying at least one hashtag assigned to p. Moreover, not all

buckets of p need to be updated when p processes a tuple t , only
those that are about t ’s hashtags assigned to p. At the same time,

any tuple carrying a timestamp falling outside the current window

can cause a window-shift and could thus trigger the production

of output tuples by p in a timely fashion. A sufficient (but not

optimal) brute-force strategy to ensure that the buckets assigned

to p are traversed when one of the above cases is given, is for p
to traverse all its buckets for each input tuple. Instead of that, for

efficiency, through the filter function,p can be instructed to traverse
its buckets only when a tuple t carries hashtags assigned to p and

when t falls outside the current window.

4.3 Example: STRETCH-implemented Join
ScaleJoin is a stream join that perform deterministic and efficient

parallel stream processing. As described in detail in [12], in its paral-

lelization approach, each of the n processing threads is responsible

for running approx 1/n of the overall comparisons incurred by

each input tuple. This is achieved by having all processing threads

process each tuple but exactly one maintaining it in its local state,

thus being responsible for the comparisons of future tuples with it.

In STRETCH, this strategy can be implemented by having exactly

one bucket (and thus exactly one thread) responsible for storing

each tuple. Alg. 4 presents how the BucketImpl class can implement

ScaleJoin’s semantics. Whenever process is invoked, the tuple is
used to purge the opposite window, check the predicate against

the tuples of the opposite window and eventually adds itself to its

window if the counter modulo the number of buckets (B) is equal to
the thread id. Since each input tuple needs to be compared with all

the tuples stored in any bucket, the filter function (Alg. 5) returns

the entire set of buckets of the processing thread. Alg. 4, once run

by STRETCH, guarantees the join semantics, since:

(1) The method process of each bucket, is invoked for all the tuples

taken from ESGin in the exact order in which such tuples are

retrieved and is never invoked concurrently (for a given bucket)

by two or more threads (Theorem 5.1).

(2) By (1) we have that all buckets update the counter consistently.

(3) By (1) and (2) we have that each tuple is stored in exactly one

bucket.

(4) By (1) and (3) we have that each stored tuple is compared with

all the tuples needed, according to the join semantics.

Algorithm 4: BucketImpl class for ScaleJoin [12]

1 Tuple[]WR ,WL (portions of the global state in the bucket)

2 counter = 0 (replicated part of the global state, in each bucket)

3 Function Tuple[] process(Tuple t )
4 increase counter

5 purge t ’s opposite stream window

6 for each t ′ in t ’s opposite stream window do
7 if predicate holds for t and t ′ then
8 add ⟨t, t ′⟩ to results

9 if this bucket index % B == counter then
10 store t in t ’s stream window

11 return results

Algorithm 5: filter function for ScaleJoin [12]

1 Function BucketImpl[] filter(BucketImpl[] b,Tuple t )
2 return b

5 INTRA-EPOCH PROCESSING
We detail here how the data structures and threads presented in

§ 4 interact within each epoch, i.e., for a given mappingM . We first

introduce the API of SM and then show how, by the processing

defined for the processing threads, STRETCH satisfies the intra-

epoch properties listed in § 3, namely that all processing threadsTP
(i) observe all input tuples in the same order (P1), each with exclu-

sive read/write access to its buckets (P2) and (ii) produce streams

of output tuples that are deterministically merged into a logical

sequence of output tuples (P3). The description is later extended

in § 6 for inter-epoch processing. SM’s API methods are:

• setup(M0,BucketImpl): initializes the SM associated to the state-

ful operator. Based onM0, SM knows how many buckets should

be maintained and the thread id to which each one is assigned to

initially.



DEBS ’19, June 24–28, 2019, Darmstadt, Germany H. Najdataei et al.

• getBuckets(Thread id): used by the processing threads to retrieve
the buckets assigned to each one of them for the current epoch.

• requestNewEpoch(M): announces to SM the intention of starting

a new epoch using the mappingM .

Alg. 6 presents the SM implementation for methods setup and
getBuckets. The method requestNewEpoch(M) is presented in de-

tail in § 6. Method setup is invoked when the stateful operator is

instantiated and relies onM0 for the mapping of buckets to threads

during epoch E0. Internally, the SM creates as many instances

of the given BucketImpl class as buckets defined in M0. Method

getBuckets is then invoked by T P
0
threads to retrieve the buckets

assigned to them based onM0. As shown in Alg. 6, the method re-

turns a set of (pointers to) buckets. Hence, the state of the stateful op-

erator as a whole is not composed by disjoint partitions maintained

locally at each thread, but rather defined in a single array of buck-

ets, whose elements are assigned to T P
0
threads. Assuming shared

memory, this enables virtual shared-nothing parallelism since each

T P
0
thread has exclusive access to its buckets but, at the same time,

buckets can be re-assigned to threads without state transfer.

Algorithm 6: SM implementation

1 BucketImpl[] buckets

2 Function setup(M0,BucketImpl)
3 store M0

4 for i = 1 . . . size(M0) do
5 store new BucketImpl instance in buckets[i]

6 Function BucketImpl[] getBuckets(Thread id)
7 BucketImpl[] threadBuckets

8 for i = 1 . . . size(M ) do
9 if M [i]==id then

10 add a pointer to buckets[i] to threadBuckets

11 return threadBuckets

5.1 Enforcing properties P1-P3 in E0
At this point, we argue that STRETCH satisfies properties P1-P3

during the first epoch E0 (i.e. from the moment a certain stateful

operator is deployed, to its first reconfiguration or for the entire

execution of a parallel operator with a static mapping of buckets

to threads). It should be noticed that, since no reconfiguration is

defined before E0, the behavior of the two ESGs is equivalent to
that of the base ScaleGate. This argumentation is later extended to

any epoch Ei by induction, after showing that properties P4-P6 are

met when transitioning across epochs.

Theorem 5.1. STRETCH satisfies properties P1-P3 in E0.

Proof. (Sketch) Property P1 is satisfied by leveraging the ESGin
and Alg. 2, since the former delivers all input tuples (once ready)

in the same order to all T P
0
threads while the latter does not dis-

card any input tuple. Property P2 is enforced by Alg. 2 and the

SM ’s implementation (Alg. 6) since the former retrieves the buckets

exactly once (upon processing of the first tuple) while the latter

returns each bucket to one and only one thread in T P
0
. Property

P3 is satisfied because each thread in T P
0

delivers a non-decreasing

timestamp-sorted stream of output tuples and the merging of such

streams is carried out deterministically by ESGout . □

6 INTER-EPOCH PROCESSING
Here we describe how STRETCH transitions from one epoch to an-

other, while guaranteeing properties P4-P6 (§ 3). We first give a high

level description of the protocol and later provide more detail and

we prove that properties P4-P6 are met while switching from epoch

Ei to epoch Ei+1, thus extending Theorem 5.1 to any epoch Ei .
At this point recall that input tuples can be of type regular or

epoch-switch. The former refers to regular tuples, the latter refers to

special control tuples used by STRETCH when switching epochs. In

a nutshell, when a special epoch-switch tuple t∗ is received in Ei by
theT P

i threads, the epoch switch protocol is triggered as soon as the

first regular tuple t with a timestamp greater than the latest times-

tamp observed before t∗ is received (as also shown in Alg. 2 L 8-10).

As we further elaborate in the following, this implies that property

P6 holds. Independently of the nature of the switch from epoch Ei to
epoch Ei+1 (i.e., decommissioning, load balancing or provisioning),

all T P
i threads invoke the method requestNewEpoch(Mapping M)

of SM and block there until the method returns. When threads are

provisioned, one of the current T P
i threads activates the necessary

new threads from the thread pool and connects them with ESGout
and ESGin . When threads are decommissioned, the latter are discon-

nected from ESGin and ESGout and are returned to the thread pool.

6.1 Switching epochs
As outlined in § 4, STRETCH provides the method switchEpoch(M)

to express the intention of switching the current epoch Ei to the

epoch Ei+1, in which mappingM is enforced. When this function is

invoked, an epoch-switch tuple carryingM is inserted in ESGin by

each T I
i thread. For each T I

i thread, the timestamp of such epoch-
switch tuple is set to that of the latest tuple added to ESGin by

the T I
i thread. This, combined with the definition of ready tuples,

implies that at least one of these epoch-switch tuples is immediately

ready for T P
i threads process.

As shown in Alg.2, all epoch-switch tuples retrieved by a thread

inT P
i are initially stored in its local list pendingEpochSwitchTuples

(L 4). At any execution point, there could be many epoch-switch tu-

ples stored byT P
i threads, either referring to the same switchEpoch

invocation (remember all T I
i threads forward one such tuple) or to

different invocations of the switchEpoch method (if the latter is

invoked when pending epoch transitions are still to be completed).

Each T P
i thread checks whether one or more epoch-switch tuples

are in pendingEpochSwitchTuples, only when an incoming regular

tuple t with a timestamp greater than (i.e. not equal to) the previous

one is retrieved from ESGin (§ 4). Since all T P
i threads retrieve all

tuples in the same order from ESGin , all T
P
i threads have the same

set of epoch-switch tuples with timestamp equal to or smaller than

t .ts in their pendingEpochSwitchTuples lists at the time t is pro-
cessed. Because of this, if one or more epoch-switch tuples exist in

pendingEpochSwitchTuples upon processing of t , the most recent

epoch-switch tuple t∗ referring to Ej (j ≥ i) is processed (if any),

while the rest of them are discarded.

Alg. 7 presents the steps followed by the T P
i threads to switch

epoch. First, the most recent unprocessed epoch-switch tuple t∗ is



STRETCH: Elastic Deterministic Streaming Analysis DEBS ’19, June 24–28, 2019, Darmstadt, Germany

Algorithm 7: Switching epoch protocol (for a thread in T P
i

upon retrieving of t )

1 retrieve most recent epoch-switch tuple t ∗ to be processed from

pendingEpochSwitchTuples and discard the rest

2 if t ∗ refers to Ej where j ≥ i then
3 SM .requestNewEpoch(t ∗ .M ) // blocking call
4 if t ∗ .M requests provisioning of threads then
5 ESGout .announceSources(new threads ids, t .ts )
6 ESGin .announceReaders(new threads ids, this thread id)

7 else if t ∗ .M requests decommissioning of threads then
8 ESGin .removeReaders(removed_ids)

9 ESGout .removeSources(removed_ids)

Algorithm 8:Method requestNewEpoch(M) (SM)

1 Method requestNewEpoch(Mapping M )
2 block until the union of processing threads for this epoch invokes

this method

3 use M as mapping from now on

retrieved and the rest of epoch-switch tuples are discarded from

the pendingEpochSwitchTuples. Then, if t∗ belongs to Ej where
j ≥ i , the blocking method requestNewEpoch of SM (Alg. 8) is

invoked by all T P
i threads passing the new mapping t∗.M . This

method will change the mapping used by SM to t∗.M as soon as all

the T P
i threads have invoked the method. If the set of processing

threads defined by t∗.M is larger than that of the current epoch (i.e.,

if threads are to be provisioned), then these are announced by allT P
i

threads as sources to ESGout and readers to ESGin . Alternatively,

if the set of T P
i threads defined by t∗.M is smaller than that of the

current epoch (i.e., if threads are to be decommissioned), methods

removeReaders and removeSources are invoked for ESGin and

ESGout , respectively.

6.2 Satisfying properties P4-P6 from Ei to Ei+1
Theorem 6.1. STRETCH satisfies properties P4-P6 when switching

from Ei to Ei+1.

Proof. (Sketch) In order to prove P4 is satisfied, it should be

noted that, based on Algs. 2, 7 and 8, the following invariants hold:

(1) ∃ unique regular tuple t , that is seen in the same relative position

in the stream by all threads of Ei and that distinguishes epochs

(i.e. mapping of buckets to threads); t is the first tuple of the
new epoch. Specifically:

(a) ∀t ′ |t ′.ts < t .ts, t ′ ∈ old epoch

(b) ∀t ′′ |t ′′.ts ≥ t .ts, t ′′ ∈ new epoch

(2) Let out(t) denote the set of output tuples triggered by a tuple t .
Then:

(a) ∀t ′ |t ′.ts < t .ts, out(t) is read by threads TO after out(t ′)
(b) ∀t ′′ |t ′′.ts ≥ t .ts, out(t ′′) is read by threadsTO after out(t).

Moreover, such t is chosen to be the first regular tuple with a times-

tamp greater than (i.e. not equal to) the previous one (observe that

t , as all tuples in ESG, is seen by all T P
i ). This, together with the

assumption on output tuples timestamps and the fact that ESG

preserves ordering, implies P6. Finally, note that, while multiple

epoch-switch tuples can be stored at the same time, two threads in

T P
i cannot be more than one epoch away because of the blocking

method requestNewEpoch; this implies P5. □

6.3 Satisfying properties P1-P3 in Ei ,∀i > 0

Theorem 6.2. ∀i > 0, STRETCH satisfies properties P1-P3 in Ei .

Proof. (Sketch) All theTp threads of epoch Ei process all tuples
in Ei . This is because of one of the following cases: (i) If threads

have been provisioned for Ei , the new readers can return ready tu-

ples starting from the latest ready tuple gotten by the calling reader

that succeeded to execute announceReaders, which is t (Alg. 7 pre-
condition (caption), and L 5-6). Hence the new readers will retrieve

their assigned buckets before processing t (Alg. 2 L 7). The new

threads are also already registered as sources to ESGout (Alg. 7

L 5-6 ), so if the processing of t or any subsequent tuple triggers

any output tuple, the latter will be deterministically delivered by

ESGout once ready. (ii) Alternatively, if threads have been decom-

missioned, threads only existing in Ei−1 are no longer readers of

ESGin or sources of ESGout (once one of the calls by any existing

threads to methods removeReaders and removeSources has com-

pleted) and have terminated. Hence, properties P1-P3 hold in any

arbitrary Ei as they do in E0. □

7 ALGORITHMIC IMPLEMENTATION OF ESG
ESG, similarly to ScaleGate, builds a list where tuples are main-

tained in timestamp order, along with some auxiliary book-keeping

structures. The protocol for adding and accessing tuples is cus-

tomized for the needs of data streaming operator pipelines. Recall

that each source thread adds tuples in timestamp order, while each

reader traverses the sorted stream of tuples, so that each tuple t
will be returned to each invoking reader, once t becomes ready.

The algorithmic implementation of all the methods is outlined be-

low. The addTuple and getNextReadyTuple methods are similar to

ScaleGate’s [11, 12], while the methods to modify the set of threads

accessing the object are new.

H t tt t tt t t T...

Reader Reader Source Source

Head Tail

Reader s
handle

Source s
handle

Ready tuples that  can be 
retrieved by readers

Tuples that  
are not ready

Figure 2: ScaleGate’s and ESG’s skip list, and readers’ /
sources’ handles.

addTuple, getNextReadyTuple: The algorithmic implementa-

tion constructs a skip list, with auxiliary book-keeping structures

—essentially acting as thread-specific data for the sources and

readers— and fine-grained synchronization to avoid global lock-

ing. The book-keeping structures contain handles to the skip list,

for sources and readers, to continue inserting or reading nodes

(tuples) respectively. As shown in Fig. 2, readers’ handles traverse



DEBS ’19, June 24–28, 2019, Darmstadt, Germany H. Najdataei et al.

the list from head to tail, retrieving the next tuple only if the

latter is not pointed by a source’s handle (thus returning only

ready tuples). At the same time, sources’ handles point to their last

inserted tuples and facilitate the sorted insertion of subsequent

tuples (also leveraging the skip list shortcuts). Since each source

adds a timestamp-sorted stream, each next insertion “falls” after

its previous one (i.e., closer to the tail). All the tuples before (i.e.,

with earlier timestamps) the earliest tuple pointed by the source

are ready.

announceReaders(List reader_IDs, rID), removeReaders(List
reader_IDs): As mentioned above, a reader has access to one of

ESG’s nodes through its own handle. A new reader p to the ESG
simply needs a handle to a node that is ready, so that p can safely

traverse the rest of the list in timestamp order in subsequent get-
NextReadyTuple invocations. Since announceReaders is called by

an existing reader, the caller’s handle to the most recently read

node of such reader is used, so that all the new readers have a

handle to the ESG. Removing a reader is as simple as removing

the thread-specific structures of that reader.

announceSources(List source_IDs, min_ts): A new source to

be registered in ESG needs its own related book-keeping struc-

tures, i.e. its own handles, which essentially can be copying the

handles of an existing source. for the sake of the new thread, an

initial dummy tuple with timestampmin_ts is inserted, to initialize
the functionality of its handles. Dummy tuples are not returned as

ready to readers invoking getNextReadyTuple, but enable other
tuples with smaller timestamps to be characterized as ready and be

returned to readers. At this point it is useful to recall that the an-
nounceSources operation is called for ESGout after the processing

thread has returned from the blocking method requestNewEpoch
(Alg. 8) with min_ts = t .ts , thus ensuring that the source calling
announceSources on ESGout is still pointing to a tuple with a

timestamp smaller than min_ts, thus guaranteeing the method

is always invoked with appropriate timestamp for the respective

parameter (cf. also Theorem 6.2). Adding more than one source at

a single time is delegated to a single thread that will add a block

of new book-keeping structures and dummy tuples (each pointing

to the respective new sources).

removeSources(List sources_ids): Removing a source consists

mainly of adding, on behalf of the source, a specially marked flush
tuple in ESG, with timestamp equal to the latest insertion of the

source. The effect of such tuple is that it will essentially push the

previously added tuples of the leaving source to be ready and

the removed source’s associated book-keeping structures can be

removed. As with dummy tuples, flush tuples are not returned as

ready by getNextReadyTuple. For the removal to be safe without

loosing tuples, it should be invoked when it is known that the

source does not have pending insertions of ordinary tuples. In

STRETCH this is ensured by the invocation of the method in Alg. 8.

Concurrent calls of the same method that updates the set of

threads (e.g. concurrent calls to announceReaders), or similar calls

in the same epoch may happen; synchronization is in place (using

a TestAndSet variable) so that only one of each type takes effect.

Concurrent calls among competing such methods (e.g. announc-
eReaders and removeReaders) are not supposed to happen, as they

both need to modify the thread-specific book-keeping structures

(indeed such invocations are not done in STRETCH ). If an ESG
implementation wants to allow that, it will need to enforce syn-

chronization to protect consistency; since these are low-contention

operations, a simple lock can do. If regular operations (to add and

get tuples) are concurrent with those that update the set of threads

and the respective book-keeping structures, the latter can over-

write, causing the former to have no effect. Note that their use in

STRETCH imply that such invocations do not interfere.

8 MODELLING STRETCH ’S PERFORMANCE
Before evaluating STRETCH, we model in this section the expected

scalability behavior of its virtual shared-nothing parallelism (VSN )

and that of pure shared-nothing parallelism (PSN ).

Let us consider a setup in which three threads t I , tP and tO are

defined for T I
, T P

and TO , respectively. Moreover, let us assume

that d I , dP and dO are the per-tuple expected processing times

for t I , tP and tO , respectively. If we aim at scaling the analysis

of these threads by provisioning more threads to T P
, then tP is

the bottleneck of the pipeline. That is, dP = max(d I ,dP ,dO ). Oth-
erwise, the threads to be provisioned should be dedicated to T I

if d I = max(d I ,dP ,dO ), or TO if dO = max(d I ,dP ,dO ). If we opt
for PSN , we need to define a mechanism for t I to route tuples to

T P
’s threads. The routing overhead will depend on the semantics

of the stateful operator (e.g., if key-by partitioning can be leveraged

or if tuples should be broadcast to T P
’s threads). A mechanism to

merge-sort deterministically tuples at tO is also required. When n
threads are defined for T P

, we refer to dRn,PSN
, dPn,PSN

and dMn,PSN
as the time spent by t I to route tuples, the new per-thread pro-

cessing time of T P
’s threads and the time spent by tO to merge

tuples deterministically. If, alternatively, we opt for STRETCH ’s

VSN , we are not required to route tuples, since all of them can be

directly accessed by T P
’s threads, but we need to account for the

synchronization and congestion overheads incurred by ESGin and

ESGout to share tuples and support determinism. In this case, when

n threads are defined forT P
, we refer to dCn,VSN

, dPn,VSN
and dMn,VSN

as the synchronization and congestion overheads incurred by t I ,
the new per-thread processing time of T P

’s threads and the time

spent by tO to merge tuples deterministically.

As discussed in [11, 12], we expect dMn,VSN
< dMn,PSN

since the

merging-sorting costs can be distributed to all T P
threads in the

VSN case. Because of such costs, and because of the possible extra-

costs incurred by T P
’s threads to chose which tuples to process,

nonetheless, we also expect dPn,VSN
≥ dPn,PSN

. Finally, we also

expect dCn,VSN
< dRn,PSN

for efficient implementations of the shared

ESG data structures [11]. Based on this, we thus expect PSN to scale

to the highest n so that:

dPn,PSN = max(d I + dRn,PSN ,d
P
n,PSN ,d

O + dMn,PSN )

Similarly, we can expect VSN to scale to the highest n so that:

dPn,VSN = max(d I + dCn,VSN ,d
P
n,VSN ,d

O + dMn,VSN )

Hence, VSN allows for better scalability than PSN for all n so that:{
d I + dCn,VSN

< dPn,VSN
< d I + dRn,PSN

dO + dMn,VSN
< dPn,VSN

< dO + dMn,PSN



STRETCH: Elastic Deterministic Streaming Analysis DEBS ’19, June 24–28, 2019, Darmstadt, Germany

0 5 10 15 20 25 30
Parallelism (# threads)

0

5

10

15

20

25

Sc
al

ab
ilit

y

Area in which VSN 
scales better than PSN

T I PSN
T I VSN

TO VSN

TO VSN

TP PSN
TP VSN

Figure 3: Scalability estimation based on the model

dP dO dPn,PSN dPn,VSN dRn,PSN dCn,VSN dMn,PSN dMn,VSN
16d I d I dP

n
dP
n 0.1d In 0.01d In 0.1d In log(n) 0.01d In log(n)

Table 1: Model’s variables sample costs for Figure 3

Figure 3 shows how T I
’s, T P

’s and TO ’s threads scale, based on

this model, when variables are set as specified in Table 1. In this

case, the n · logn factor in dMn,PSN
and dMn,VSN

models the merge-

sorting costs, while dRn,PSN
has an n factor to model the cost of

broadcast communication (later evaluated in § 9).

For simplicity, the figure shows T I
’s and TO ’s max rates’ scal-

ability without accounting for bounded communication queues

among threads nor mechanisms such as flow control. Also, since

we assume in this model the existence of a single thread in T I
, we

do not explicitly account for PSN for the additional costs needed to

merge tuples atT P
’s threads if the latter are forwarded by multiple

physical streams.

9 EVALUATION
We first empirically validate the model of § 8, including virtual

shared-nothing parallelism VSN (in STRETCH ) and shared-nothing

parallelism PSN (in Flink), for both synthetic and real-world data,

from Twitter. Then, we evaluate STRETCH ’s performance for the

ScaleJoin usecase (§ 4.3) and compare it with that of the original

implementation [12], focusing on intra-epoch throughput and la-

tency for the maximum sustainable rate and studying the scalability

for increasing number of threads. Lastly, we evaluate STRETCH ’s

elasticity by provisioning/decommissioning threads, measuring the

reconfiguration time and its effect on throughput and latency.

Evaluation setup. Experiments run on a 2.10 GHz Intel(R) Xeon(R)

E5-2695 CPU with 2 sockets (each with 18 cores), 72 logical threads

with hyper-threading and 64 GBmemory. STRETCH is implemented

in Java and tested with Java HotSpot(TM) 64-Bit Server VM with

default garbage collection settings. For PSN , we use Flink 1.6.0.

All experiments show the average end-to-end latency and through-

put over five distinct runs. The former is the timestamp difference

of each output tuple and the latest input tuple that contributes to it.

To compute the latter, we let input streams inject tuples at full speed

while using flow control to handle backpressure. The implemented

flow control mechanism is similar to that of Flink, where the rate

of a stream is adjusted by an intermediate bounded queue.

9.1 VSN vs PSN scalability - synthetic dataset
To evaluate our model (§ 8), we used two synthetic queries in Flink.

In our implementation, d I is approximately 0.7 msec (i.e. it takes

0.7 msec for t I to create and forward an input tuple). Following

the costs presented in § 8, the values of all parameters are then

calculated for different number of threads for T P
. Flink dedicates

one thread per source, per parallel instance of an operator, and

per sink. To match the number of threads used by Flink to that

of STRETCH, we define one source for each T I
thread, we set the

operator parallelism to the number of T P
threads, and define one

sink for eachTO thread. We use Flink’s broadcast primitive to share

tuples between the sources and the parallel operator instances.

Figure 4a shows the evalution results. To compare the observed

behavior with that of the model, the figure also includes the ex-

pected scalability based on the model (i.e. as in Fig. 3). As shown,

the throughput figure of PSN matches the corresponding one from

the model. The behaviour of VSN also matches that of the model

(despite the larger deviation between the observed and expected

behavior due to the higher overheads in the system). For both VSN
and PSN , the rate ofT P

threads grows to match that ofT I
while the

latency decreases due to the smaller delay for tuples to be processed.

VSN achieves higher throughput and lower latency than PSN , as

also expected based on the model. Once TO ’s threads become the

bottleneck of the pipeline, further increasing the number of threads

for T P
results in a growing latency. In this case, the buffers used

to handle the backpressure by Flink (not discussed in our model)

stabilize the latency by controlling the input rate.

9.2 VSN vs PSN scalability - Twitter dataset
In this case, we study the maximum throughput for a determin-

istic operator with two logical streams. T P
threads pass tuples

downstream without performing any processing. By removing the

processing cost, the maximum throughput is then given either by

the speed of T I
’s threads or the sorting costs of T P

or TO threads.

We create two similar queries in Flink (as PSN ) and STRETCH (as

VSN ), and process a dataset consisting of 4.3 million tweets, be-

tween the 1
st

and 2
nd

of October 2018. Also in this case, our Flink

implementation is defined so that the number of threads used to

forward and process tuples matches STRETCH ’s one. We use two

threads for T I
to read and forward input tuples. In STRETCH, since

T P
and TO threads receive tuples from ESGs in timestamp order,

there is no need for sorting. However, in Flink, T P
and TO threads

are responsible for sorting the tuples to support determinism.

Figure 4b shows the operators’ scalability. For an increasing

number ofT P
threads, STRETCH faces a slight decrease in through-

put due to the synchronization overheads induced by the higher

number of threads. PSN in Flink starts from a lower throughput

and decreases faster for an increasing number of threads. Moreover,

the average latency in PSN in Flink, regardless of the number of

T P
threads, is higher than 200 msec, while VSN ’s in STRETCH ’s is

always less than 20 msec.



DEBS ’19, June 24–28, 2019, Darmstadt, Germany H. Najdataei et al.

10 20 30

Parallelism (#threads)

0

20

40

60

80

L
a
te

n
c
y
 (

m
s
)

VSN (STRECH)

PSN (Flink)

200

400

600

800

1000

1200

T
h
ro

u
g
h
p
u
t 
(t

/s
) TP VSN

(model)

TP PSN
(model)

VSN (STRECH)

PSN (Flink)

(a) Synthetic workload

0

20000

40000

60000

80000

100000

120000

140000

T
h

ro
u

g
h

p
u

t 
(t

/s
)

STRETCH

Flink

20 40 60

Parallelism (#threads)

0

200

400

600

800

1000

1200

L
a

te
n

c
y
 (

m
s
)

STRETCH

Flink

(b) Twitter

Figure 4: Throughput and latency of VSN and PSN .

9.3 ScaleJoin usecase
We continue our evaluation focusing on a specific operator with

two logical streams: ScaleJoin [12]. The performance of this parallel

operator can be hampered in existing SPEs because of the need for

broadcasting tuples to all T P
threads. Because of this, and since

Flink only supports parallel EquiJoin, we compare our results in

this case with those achieved by the ScaleJoin implementation.

We follow the same benchmark used in [12, 25] to join two

logical streams of R and S tuples. R tuples carry attributes ⟨ts,x ,y⟩,
where x is type of int andy is floatwhile S tuples carry attributes
⟨ts,a,b, c,d⟩ where a, b, c , and d are types of int, float, double
and boolean, respectively. For each pair of tuples tR and tS , an
output tuple with schema ⟨ts,x ,y,a,b, c,d⟩ is produced if:

tS .a − 10 ⩽ tR .x ⩽ tS .a + 10 and tS .b − 10 ⩽ tR .y ⩽ tS .b + 10

Attributes x , y, a and b are randomly selected from a uniform

distribution with interval [1, ..., 10000] which results on average in

an output tuple every 250000 comparisons.

Intra-epoch performance. To assess the intra-epoch performance

of STRETCH, we first check its scalability regarding the number

of T P
threads. Also, we show the performance of a single thread,

processing the tuples sequentially. In the single thread implemen-

tation, we use one thread per T I
, T P

, and TO sets. There is one

bounded buffer between the threads of T I
and T P

and one buffer

between the ones of T P
and TO , to control the rate. Hence, the sin-

gle thread implementation is similar to the ScaleJoin and STRETCH
with one thread for T P

, where the ScaleGates are substituted with

bounded buffers. Figure 5 shows (i) the maximum sustainable input

rate averaged over 5 different runs (and the standard deviation) for

increasing number of T P
threads, (ii) the corresponding through-

put, in terms of number of comparisons and (iii) the corresponding

latency in logarithmic scale, for a time-based window of size 5 min.

As shown in the intra-epoch column of the figure, the through-

put of ScaleJoin and STRETCH with one thread for T P
is similar to

the single thread but the latency for the single thread is lower than

the other two, which is the cost of using ScaleGate. However, as

expected (and as discussed in detailed in [12]), by increasing the

number of T P
threads, the throughput for ScaleJoin and STRETCH

grows linearly. Although hyper-threading (after 36 physical threads)

causes a degradation, by keeping increasing the number of T P

threads, both STRETCH and ScaleJoin are still capable of scaling.

The latency for the highest throughput achieved by different num-

bers of threads for T P
shows that the STRETCH achieves latency

in the same order as that of ScaleJoin.

Inter-epoch performance. As discussed in § 3, STRETCH provides

a general API that allows any external policy to take decisions about

when to provision or decommission a certain number of threads

(based on the statistics provided by the STRETCH framework it-

self or other external information). In these experiments, similarly

as done in [10], we trigger the provisioning or decommissioning

of threads based on the processing capacity of the threads. More

concretely, we define an upper, a target and a bottom processing

capacity threshold. When the current processing load of active

threads exceeds the upper threshold, the smallest amount of new

threads needed to bring the average processing capacity below the

target threshold is provisioned. When the current processing load

of active threads is below the bottom threshold, the smallest amount

of underutilized threads needed to bring the average processing

capacity below the target threshold is decommissioned. In our ex-

periments, the upper, target and bottom thresholds are set to 90%,

70%, and 45% of the threads maximum throughput, respectively.

To evaluate the elasticity of the framework, we increase (de-

crease) the load after filling the window and add (remove) threads

while measuring the latency, throughput and reconfiguration time.

For the provisioning experiments, we start with input rate 70%

of the maximum rate that can be sustained by the corresponding

number of T P
threads for time-based window with window size 5

minutes. After 6 minutes, when the window is full and the system

is stable, we increase the rate to 120% of the maximum sustainable

rate which requires provisioning of new threads for T P
in order to

keep up with the input rate, and therefore trigger an epoch switch.

For the decommissioning experiments, we start with 70% of the

maximum sustainable rate and then after 6 minutes, similarly as

the previous experiment, decrease the rate to 30%. In this case, the

system needs decommissioning a few number of active T P
threads

in order to utilize resource usages. Table 2 presents the number of

threads that need to be provisioned or decommissioned depending

on the number of T P
threads running in the system.

Figure 5, columns labeled ”provisiong" and ”decommissioning",

show the effect of increasing or decreasing the workload for Scale-

Join and STRETCH, and consecutively provisioning or decommis-

sioning threads for T P
for the 18 threads in STRETCH. As shown

for the provisioning, by increasing the workload, STRETCH can

sustain higher rates when adding new threads, resulting in higher

starting |T P | 5 9 18 30 40

|T P | after Provisioning 9 16 31 52 69

|T P | after Decommissioning 2 3 7 12 17

Table 2: Provisioned / decommissioned threads depending
on the number of T P threads.



STRETCH: Elastic Deterministic Streaming Analysis DEBS ’19, June 24–28, 2019, Darmstadt, Germany

0

1

2

3
1e9

0

2000

4000

6000

In
p

u
t 

ra
te

 (
t/

s
)

Intra-epoch

3000

4000

provisioning 
 (18 -> 31 PTs)

1500

2000

2500

decommissioning 
 (18 -> 7 PTs)

0

2

4

6

th
ro

u
g

h
p

u
t 

(c
/s

)

1e9

Single thread

STRETCH

ScaleJoin

0.0

0.5

1.0
1e9

0 20 40 60

# threads

10
1

10
2

10
3

la
te

n
c
y
 (

m
s
)

hyper-threading

0 250 500 750

time (sec)

10
1

10
2

10
3

0 250 500 750

time (sec)

10
1

10
2

10
3

1 5 9 18 30 40 60 70

# threads

10

20

30

re
c
o
n
fi
g
u
ra

ti
o
n
 t

im
e
 (

m
s
)

decommissioning

provisioning

inter-epoch

1 5 9 18 30 40 60 70

# threads

0.0

0.5

1.0

1.5

2.0

C
o
e
ff

ic
ie

n
t 

o
f 

 v
a
ri

a
ti

o
n
 p

e
rc

e
n
ta

g
e

Load balance

Figure 5: The performance of STRETCH framework with ScaleJoin for Join operator using time-based window with window size 5 minutes

throughput without affecting the latency. In the decommission-

ing procedure, when decreasing the workload, not only STRETCH
achieves the same throughput as ScaleJoin, as expected, but it also

shows slightly lower latency.

Moreover, we measure the reconfiguration time, which starts

from the moment STRETCH receives a reconfiguration command

till it successfully finishes executing it. As shown at the rightmost

column in Fig. 5, the reconfiguration time is always less than 40

msec, which indicates there is no significant degradation during the

epoch switch. Furthermore, at the same column, we show the load

imbalance, in terms of coefficient of variation percentages. As it

can be observed, in most cases there is at most 1% difference, while

in all cases the difference is at most 2%.

Summary of the evaluation results
The empirical study (i) validates the model in § 8 (Fig. 4 and 3),

(ii) demonstrates very fast reconfiguration possibilities, of just a few

msec (Fig. 5 inter-epoch parts), enabled by STRETCH, while it also
(iii) shows the low-overhead induced for in achieving these (Fig. 5

intra-epoch column), while preserving determinism in STRETCH.

10 RELATEDWORK
Several scalable and elastic parallel approaches have been discussed

in the literature, e.g. [10, 22, 24]. For a systematic review, we refer

the reader to [14]. This work does not focus on a particular strategy

or a specific operator, but rather provides a general framework

with the goal of promoting virtual shared-nothing parallelism (also

showing it can embrace existing parallelism schemes), which, to the

best of our knowledge, has not been studied before. The following

is a summary of the state of the art in elasticity for intra-operator

parallelization, including relation to our results.We organize the dis-

cussion in terms of key goals and properties, i.e. number of threads

that can change per reconfiguration, the roles of state transfer and

of the triggering mechanism, the focus on determinism and the

reaction time vs overhead of frequent reconfigurations.

Regarding changes in number of threads, the literature provides

methods for provisioning and decommissioning one thread at a time

(e.g., [26], [19]) or more threads (e.g., [17]), as in our case. Differently

from us, nonetheless, [17] does not actively target determinism.

Regarding state-transfers, one issue, orthogonal to our work, is

related to load balancing, a combinatorial problem, related to pack-

ing (cf. [3, 10, 16, 17] and references therein). Another issue is that

of the cost of transferring, since the overheads of state serialization

and deserialization can degrade the SPE’s performance. This can

be alleviated by techniques aiming at reducing latency spikes, such

as the ones in [15], or at recreating small states at the downstream

thread by sending to the latter previously sent tuples (rather than

transferring the upstream’s thread’s state), or by distributing the

work to nodes through hashing, in ways that minimize the changes

when rehashing [8]. Our work enables possibilities for efficiency

due to sharing and advances the front of scaling-up by not requiring

any state transfer, thus making these issues orthogonal and existing

methods complementary to ours.

Targeting determinism needs appropriate synchronization. De-

terminism has been formalized in the context of parallel SPEs and

in the context of algorithms for parallel data streaming operators,

for instance by [11, 12] and is also referred to as safety by [18] and

semantic transparency by [10]. Here we show sufficient conditions

for determinism, also under reconfigurations.

Another key issue is when to trigger reconfigurations, as it is

related to trade-offs between overheads and time to react when

reconfigurations are needed. In the literature there exist proactive

and reactive approaches, load-based approaches and application-

performance- related approaches (cf. [6, 10, 19, 21, 23, 32] and ref-

erences therein). Various triggering mechanisms can be combined



DEBS ’19, June 24–28, 2019, Darmstadt, Germany H. Najdataei et al.

with STRETCH. As discussed by [6] with respect to SASO proper-

ties (i.e., Stability, Accuracy, Settling time and Overshoot), elasticity

mechanics build on top of contrasting objectives. In addressing this

issue, the work presented here implies better margins, due to the ex-

tra efficient reconfiguration proposed when scaling-up is the target.

11 CONCLUSIONS AND FUTUREWORK
We presented STRETCH, a framework that provides virtual shared-

nothing parallelism and supports determinism while easing the

programming of scalable, elastic, high-throughput and low-latency

stateful streaming analysis. The ease of use is not only because

STRETCH does not require coding of state transfer protocols but

also due to the specified set of conditions that, once fulfilled, we

have shown they imply deterministic execution. STRETCH builds

on several results of the recent years for efficient intra-node stream

processing and fuses them in a holistic framework, able to embrace

many parallelization strategies. We provide empirical evidence that

STRETCH ’s virtual shared-nothing parallelism performs as modeled

offering improvements over pure shared-nothing parallelism. We

also show that STRETCH outperforms state-of-the-art tools such

as ScaleJoin and components in SPEs such as Flink, also providing

fast reconfigurations, in the realm of few msec.

Future directions include the study of possibilities to combine

STRETCH ’s intra-node elastic approach with complementary inter-

node elasticity, focusing on joint schemes for homogeneous dis-

tributed cloud-based systems, or heterogeneous fog-based ones.

ACKNOWLEDGMENTS
We thank our shepherd, Paris Carbone, and the anonymous review-

ers for their constructive comments and suggestions. The work was

supported by the SSF proj. “FiC” nr. GMT14-0032, by the Chalmers

Energy AoA framework proj. INDEED and STAMINA and by the

Swedish Research Council proj. “HARE” nr. 2016-03800.

REFERENCES
[1] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak, Rafael J

Fernández-Moctezuma, Reuven Lax, Sam McVeety, Daniel Mills, Frances Perry,

Eric Schmidt, and Sam Wittle. 2015. The dataflow model: a practical approach

to balancing correctness, latency, and cost in massive-scale, unbounded, out-of-

order data processing. Proc. Endowment 8, 12 (2015), 1792–1803.
[2] Magdalena Balazinska, Hari Balakrishnan, Samuel R Madden, and Michael Stone-

braker. 2008. Fault-tolerance in the Borealis distributed stream processing system.

ACM Trans. on Database Systems (TODS) 33, 1 (2008), 3.
[3] Cagri Balkesen, Nesime Tatbul, and M Tamer Özsu. 2013. Adaptive input admis-

sion and management for parallel stream processing. In Proc. of the 7th ACM Int’l
Conf. on Distributed event-based systems. ACM, 15–26.

[4] Paris Carbone, Stephan Ewen, Gyula Fóra, Seif Haridi, Stefan Richter, and Kostas

Tzoumas. 2017. State management in Apache Flink®: consistent stateful dis-

tributed stream processing. Proc. VLDB Endowment 10, 12 (2017), 1718–1729.
[5] Valeria Cardellini, Matteo Nardelli, and Dario Luzi. 2016. Elastic stateful stream

processing in storm. In High Performance Computing & Simulation (HPCS), 2016
Int’l Conf. on. IEEE, 583–590.

[6] Tiziano De Matteis and Gabriele Mencagli. 2017. Proactive elasticity and energy

awareness in data stream processing. Journal of Systems and Software 127 (2017),
302–319.

[7] flink [n. d.]. Apache Flink. https://flink.apache.org. ([n. d.]). Accessed:2019-3-1.

[8] Buğra Gedik. 2014. Partitioning Functions for Stateful Data Parallelism in Stream

Processing. The VLDB Journal 23, 4 (Aug. 2014), 517–539. https://doi.org/10.

1007/s00778-013-0335-9

[9] Buğra Gedik, Rajesh R Bordawekar, and S Yu Philip. 2009. CellJoin: a parallel

stream join operator for the cell processor. The VLDB journal (2009).
[10] Vincenzo Gulisano. 2012. StreamCloud: An Elastic Parallel-Distributed Stream

Processing Engine. Ph.D. Dissertation. Universidad Politécnica de Madrid.

[11] Vincenzo Gulisano, Yiannis Nikolakopoulos, Daniel Cederman, Marina Papatri-

antafilou, and Philippas Tsigas. 2017. Efficient Data Streaming Multiway Ag-

gregation Through Concurrent Algorithmic Designs and New Abstract Data

Types. ACM Trans. Parallel Comput. 4, 2, Article 11 (Oct. 2017), 28 pages.

https://doi.org/10.1145/3131272

[12] Vincenzo Gulisano, Yiannis Nikolakopoulos, Marina Papatriantafilou, and Philip-

pas Tsigas. 2016. ScaleJoin: a Deterministic, Disjoint-Parallel and Skew-Resilient

Stream Join. IEEE Trans. Big Data PP, 99 (2016), 1–1. https://doi.org/10.1109/

TBDATA.2016.2624274

[13] Vincenzo Gulisano, Yiannis Nikolakopoulos, Ivan Walulya, Marina Papatri-

antafilou, and Philippas Tsigas. 2015. Deterministic Real-time Analytics of

Geospatial Data Streams Through ScaleGate Objects. In Proceedings of the 9th
ACM International Conference on Distributed Event-Based Systems (DEBS ’15).
ACM, New York, NY, USA, 316–317. https://doi.org/10.1145/2675743.2776758

[14] Vincenzo Gulisano, Marina Papatriantafilou, and Alessandro Vittorio Papadopou-

los. 2018. Elasticity. In Encyclopedia of Big Data Technologies, Sherif Sakr and
Albert Y. Zomaya (Eds.). Springer Int’l Conf. Publishing, Cham, 1–7. https:

//doi.org/10.1007/978-3-319-63962-8_191-1

[15] Thomas Heinze, Zbigniew Jerzak, Gregor Hackenbroich, and Christof Fetzer.

2014. Latency-aware Elastic Scaling for Distributed Data Stream Processing

Systems. In Proceedings of the 8th ACM International Conference on Distributed
Event-Based Systems (DEBS ’14). ACM, New York, NY, USA, 13–22. https://doi.

org/10.1145/2611286.2611294

[16] Thomas Heinze, Yuanzhen Ji, Yinying Pan, Franz Josef Grueneberger, Zbigniew

Jerzak, and Christof Fetzer. 2013. Elastic Complex Event Processing under Varying

Query Load.. In BD3@ VLDB. 25–30.
[17] Thomas Heinze, Valerio Pappalardo, Zbigniew Jerzak, and Christof Fetzer. 2014.

Auto-scaling techniques for elastic data stream processing. In Data Engineering
Workshops (ICDEW), 2014 IEEE 30th Int’l Conf. on. IEEE, 296–302.

[18] Martin Hirzel, Robert Soulé, Scott Schneider, Buğra Gedik, and Robert Grimm.

2014. A Catalog of Stream Processing Optimizations. ACM Comput. Surv. 46, 4,
Article 46 (March 2014), 34 pages. https://doi.org/10.1145/2528412

[19] C. Hochreiner, M. Vögler, S. Schulte, and S. Dustdar. 2016. Elastic Stream Pro-

cessing for the Internet of Things. In 2016 IEEE 9th International Conference on
Cloud Computing (CLOUD). 100–107. https://doi.org/10.1109/CLOUD.2016.0023

[20] Yuanzhen Ji, Hongjin Zhou, Zbigniew Jerzak, Anisoara Nica, Gregor Hacken-

broich, and Christof Fetzer. 2015. Quality-Driven Continuous Query Execution

over Out-of-Order Data Streams. In Proc. of the 2015 ACM SIGMOD Int’l Conf. on
Management of Data. ACM, 889–894.

[21] A. G. Kumbhare, Y. Simmhan, M. Frincu, and V. K. Prasanna. 2015. Reactive

Resource Provisioning Heuristics for Dynamic Dataflows on Cloud Infrastructure.

IEEE Transactions on Cloud Computing 3, 2 (April 2015), 105–118. https://doi.org/

10.1109/TCC.2015.2394316

[22] Luo Mai, Kai Zeng, Rahul Potharaju, Le Xu, Steve Suh, Shivaram Venkataraman,

Paolo Costa, Terry Kim, Saravanan Muthukrishnan, Vamsi Kuppa, et al. 2018.

Chi: a scalable and programmable control plane for distributed stream processing

systems. Proc. VLDB Endowment 11, 10 (2018), 1303–1316.
[23] André Martin, Andrey Brito, and Christof Fetzer. 2014. Scalable and elastic

realtime click stream analysis using streammine3g. In Proc. of the 8th ACM Int’l
Conf. on Distributed Event-Based Systems. ACM, 198–205.

[24] RubenMayer, Boris Koldehofe, and Kurt Rothermel. 2015. Predictable low-latency

event detection with parallel complex event processing. IEEE Internet of Things
Journal 2, 4 (2015), 274–286. https://doi.org/10.1109/JIOT.2015.2397316

[25] Pratanu Roy, Jens Teubner, and Rainer Gemulla. 2014. Low-Latency Handshake

Join. Proc. VLDB Endowment (2014).
[26] S. Schneider, H. Andrade, B. Gedik, A. Biem, and K. Wu. 2009. Elastic scaling of

data parallel operators in stream processing. In 2009 IEEE International Sympo-
sium on Parallel Distributed Processing. 1–12. https://doi.org/10.1109/IPDPS.2009.
5161036

[27] spark [n. d.]. Apache Spark. https://spark.apache.org. ([n. d.]). Accessed:2019-3-1.

[28] storm [n. d.]. Apache Storm. http://storm.apache.org. ([n. d.]). Accessed:2019-3-1.

[29] Jens Teubner and Rene Mueller. 2011. How soccer players would do stream joins.

In Proc. of the 2011 ACM SIGMOD Int’l Conf. on Management of data.
[30] Ivan Walulya, Dimitris Palyvos-Giannas, Yiannis Nikolakopoulos, Vincenzo

Gulisano, Marina Papatriantafilou, and Philippas Tsigas. 2018. Viper: A mod-

ule for communication-layer determinism and scaling in low-latency stream

processing. Future Generation Computer Systems 88 (2018), 297–308.
[31] Nikos Zacheilas, Vana Kalogeraki, Yiannis Nikolakopoulos, Vincenzo Gulisano,

Marina Papatriantafilou, and Philippas Tsigas. 2017. Maximizing Determinism in

Stream Processing Under Latency Constraints. In Proceedings of the 11th ACM
Int’l Conf. on Distributed and Event-based Systems (DEBS ’17). ACM, 112–123.

https://doi.org/10.1145/3093742.3093921

[32] N. Zacheilas, V. Kalogeraki, N. Zygouras, N. Panagiotou, and D. Gunopulos. 2015.

Elastic complex event processing exploiting prediction. In 2015 IEEE International
Conference on Big Data (Big Data). 213–222. https://doi.org/10.1109/BigData.2015.
7363758

https://flink.apache.org
https://doi.org/10.1007/s00778-013-0335-9
https://doi.org/10.1007/s00778-013-0335-9
https://doi.org/10.1145/3131272
https://doi.org/10.1109/TBDATA.2016.2624274
https://doi.org/10.1109/TBDATA.2016.2624274
https://doi.org/10.1145/2675743.2776758
https://doi.org/10.1007/978-3-319-63962-8_191-1
https://doi.org/10.1007/978-3-319-63962-8_191-1
https://doi.org/10.1145/2611286.2611294
https://doi.org/10.1145/2611286.2611294
https://doi.org/10.1145/2528412
https://doi.org/10.1109/CLOUD.2016.0023
https://doi.org/10.1109/TCC.2015.2394316
https://doi.org/10.1109/TCC.2015.2394316
https://doi.org/10.1109/JIOT.2015.2397316
https://doi.org/10.1109/IPDPS.2009.5161036
https://doi.org/10.1109/IPDPS.2009.5161036
https://spark.apache.org
http://storm.apache.org
https://doi.org/10.1145/3093742.3093921
https://doi.org/10.1109/BigData.2015.7363758
https://doi.org/10.1109/BigData.2015.7363758

	Abstract
	1 introduction
	2 Preliminaries
	3 Problem Modeling and Objectives
	4 Overview of STRETCH
	4.1 The Elastic ScaleGate (ESG) data object
	4.2 The STRETCH framework's architecture
	4.3 Example: STRETCH-implemented Join

	5 Intra-epoch processing
	5.1 Enforcing properties P1-P3 in E0

	6 Inter-epoch Processing
	6.1 Switching epochs
	6.2 Satisfying properties P4-P6 from Ei to Ei+1
	6.3 Satisfying properties P1-P3 in Ei, i > 0

	7 Algorithmic implementation of ESG
	8 Modelling STRETCH's performance
	9 evaluation
	9.1 VSN vs PSN scalability - synthetic dataset
	9.2 VSN vs PSN scalability - Twitter dataset
	9.3 ScaleJoin usecase

	10 relatedwork
	11 Conclusions and future work
	Acknowledgments
	References

